Download Free Nanoscale Surface Modification For Enhanced Biosensing Book in PDF and EPUB Free Download. You can read online Nanoscale Surface Modification For Enhanced Biosensing and write the review.

This book gives a comprehensive overview of electrochemical-based biosensors and their crucial components. Practical examples are given throughout the text to illustrate how the performance of electrochemical-based biosensors can be improved by nanoscale surface modification and how an optimal design can be achieved. All essential aspects of biosensors are considered, including electrode functionalization, efficiency of the mass transport of reactive species, and long term durability and functionality of the sensor. This book also: · Explains how the performance of an electrochemical-based biosensor can be improved by nanoscale surface modification · Gives readers the tools to evaluate and improve the performance of a biosensor with a multidisciplinary approach that considers electrical, electrostatic, electrochemical, chemical, and biochemical events · Links the performance of a sensor to the various governing physical and chemical principles so readers can fully understand how a biosensor with nanoscale modified electrode surface functions.
Nanoscale techniques and devices have had an explosive influence on research in life sciences and bioengineering. Reflecting this influence, Nanopatterning and Nanoscale Devices for Biological Applications provides valuable insight into the latest developments in nanoscale technologies for the study of biological systems. Written and edited by experts in the field, this first-of-its-kind collection of topics: Covers device fabrication methods targeting the substrate on the nanoscale through surface modification Explores the generation of nanostructured biointerfaces and bioelectronics elements Examines microfluidically generated droplets as reactors enabling nanoscale sample preparation and analysis Gives an overview of key biosensors and integrated devices with nanoscale functionalities Discusses the biological applications of nanoscale devices, including a review of nanotechnology in tissue engineering Readers gain a deep understanding of the cutting-edge applications of nanotechnologies in biological engineering, and learn how to apply the relevant scientific concepts to their own research. Nanopatterning and Nanoscale Devices for Biological Applications is the definitive reference for researchers in engineering, biology, and biomedicine, and for anyone exploring the newest trends in this innovative field.
Nanobiosensors for Bio-molecular Targeting presents the latest analytical methods for the detection of different substances in the range of small molecules to whole cells, exploring the advantages and disadvantages of each method. Biosensors combine the component of biological origin and physicochemical detector to show the presence of analytes in a given sample. The use of bionanotechnology has led to a significant advancement in the progression of nanobiosensors and has been effectively used for biomedical diagnosis. - Explains the detection techniques used by nanosensors, exploring the strengths and weaknesses of each for the detection of disease - Shows how biosensors are used to detect various types of biomolecules - Demonstrates how the use of nanomaterials makes biosensors both cheaper and more efficient
Based on the success of the first edition, this second edition continues to build upon fundamental principles of biosensor design and incorporates recent advances in intelligent materials and novel fabrication techniques for a broad range of real world applications. The book provides a multi-disciplinary focus to capture the ever-expanding field of biosensors. Smart Biosensor Technology, Second Edition includes contributions from leading specialists in a wide variety of fields with a common focus on smart biosensor design. With 21 chapters organized in five parts, this compendium covers the fundamentals of smart biosensor technology, important issues related to material design and selection, principles of biosensor design and fabrication, advances in bioelectronics, and a look at specific applications related to pathogen detection, toxicity monitoring, microfluidics and healthcare. Features Provides a solid background in the underlying principles of biosensor design and breakthrough technologies for creating more intelligent biosensors Focusses on material design and selection including cutting-edge developments in carbon nanotubes, polymer nanowires, and porous silicon Examines machine learning and introduces concepts such as DNA-based molecular computing for smart biosensor function Explores the principles of bioelectronics and nerve cell microelectrode arrays for creating novel transducers and physiological biosensors Devotes several chapters to biosensors developed to detect and monitor a variety of toxins and pathogens Offers expert opinions on the future directions, challenges and opportunities in the field
Nanobiosensors: Nanotechnology in the Agri-Food Industry, Volume 8, provides the latest information on the increasing demand for robust, rapid, inexpensive, and safe alternative technologies that monitor, test, and detect harmful or potentially dangerous foods. Due to their high sensitivity and selectivity, nanobiosensors have attracted attention for their use in monitoring not only biological contaminants in food, but also potential chemical and physical hazards. This book offers a broad overview regarding the current progress made in the field of nanosensors, including cutting-edge technological progress and the impact of these devices on the food industry. Special attention is given to the detection of microbial contaminants and harmful metabolotes, such as toxins and hormones, which have a great impact on both humans and animal health and feed. - Includes the most up-to-date information on nanoparticles based biosensors and quantum dots for biological detection - Provides application methods and techniques for research analysis for bacteriological detection and food testing - Presents studies using analytical tools to improve food safety and quality analysis
Annual Review of Nano Research, Volume 3 focuses mainly on nanofabrication, nanomaterials and nanostructures, and energy application of nanomaterials. All the review chapters are contributed by well-published scientists and bring the most recent advancement in selected topics to the readers. This review volume will serve dual purposes: either as an excellent introduction to scientists whose expertise lie in different fields but who are interested in learning about nanotechnology, or as a quick reference for experts active in the field of nanoscience and nanotechnology. Sample Chapter(s). Chapter 1: Nanoscale Biosensors and Biochips (64 KB). Contents: Nanoscale Biosensors and Biochips (W R Leifert et al.); Surface Modifications and Applications of Magnetic and Selective Nonmagnetic Nanoparticles (R Shen & H Yang); Progress in Bionanocomposite Materials (E Ruiz-Hitzky et al.); Mesoporous Silica Nanoparticles: Synthesis and Applications (J L Vivero-Escoto et al.); Nanostructured Mesoporous Materials as Drug Delivery Systems (I Izquierdo-Barba et al.); Chemical Synthesis, Self-Assembly and Applications of Magnetic Nanoparticles (S Peng et al.); Recent Development and Applications of Nanoimprint Technology (X Cheng & L J Guo); Three-Dimensional Nanostructure Fabrication by Focused-Ion-Beam Chemical-Vapor-Deposition (S Matsui); Dye-Sensitized Solar Cells Based on Nanostructured Zinc Oxide (Q-F Zhang & G-Z Cao); Nanocomposites as High Efficiency Thermoelectric Materials (S J Thiagarajan et al.); Nanostructured Materials for Hydrogen Storage (S Sepehri & G-Z Cao); Recent Advances in the Characterization of Mesoporous Materials by Physical Adsorption (M Thommes). Readership: Research scientists and engineers in academia, research institutes and industry, as well as graduate students and upper-level undergraduate students in the physical sciences and engineering.
Surface Modified Nanomaterials for Applications in Catalysis: Fundamentals, Methods and Applications provides an overview of the different state-of-the-art surface modification methods of nanomaterials and their commercial applications. The main objective of this book is to comprehensively cover the modification of nanomaterial and their fabrication, including different techniques and discussions of present and emerging commercial applications. The book addresses fundamental chemistry concepts as applied to the modification of nanomaterials for applications in energy, catalysis, water remediation, sensors, and more. Characterization and fabrication methodologies are reviewed, along with the challenges of up-scaling of processes for commercial applications. This book is suitable for academics and practitioners working in materials science, engineering, nanotechnology, green chemistry and chemical engineering. Provides an overview of the basic principles of surface modification of nanomaterials Reviews useful fabrication and characterization methodologies for key applications Addresses surface modified nanomaterials for applications in catalysis, energy, sensor, environment, and more
Polymer-Based Nanoscale Materials for Surface Coatings presents the latest advances and emerging technologies in polymer-based nanomaterials for coatings, focusing on novel materials, characterization techniques, and cutting-edge applications. Sections present the fundamentals of surface preparation and nanocoatings, linking materials and properties, explaining the correlation between morphology, surface phenomena, and surface protection mechanism, and covering theory, modeling and simulation. Other presented topics cover characterization methods, with an emphasis on the latest developments in techniques and approaches. Aging and lifecycle assessment of coated surfaces and coatings are also discussed.Final sections explore advanced applications across a range of fields, including intelligent coatings for biomedical implants, self-healing coatings, syper-hydrophobicity, electroluminescence, sustainable edible coatings, marine antifouling, corrosion resistance, and photocatalytic coatings. - Explains the fundamentals of coatings and surface protection, mechanisms, materials and properties, and modeling and simulation - Presents detailed information on the latest characterization techniques to prepare nanoscale polymer coatings with enhanced properties - Explores a broad range of state-of-the-art applications and considers aging and lifecycle assessments of coatings