Download Free Nanoparticles For Rational Vaccine Design Book in PDF and EPUB Free Download. You can read online Nanoparticles For Rational Vaccine Design and write the review.

This book introduces nanoparticles as a powerful platform for vaccine design. Current challenges in vaccine development are discussed and the unique advantages nanoparticles provide in overcoming these challenges are explored. The authors offer fascinating insights into the immunological assets of using nanoparticles as delivery vehicles or adjuvants and present different materials that are being used in nanoparticle-based vaccine development, covering peptides, proteins, polymers, virus-like particles, and liposomes. Its contemporary research insights and practical examples for applications make this volume an inspiring read for researchers and clinicians in vaccinology and immunology. Chapter "Liposome Formulations as Adjuvants for Vaccines" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book introduces nanoparticles as a powerful platform for vaccine design. Current challenges in vaccine development are discussed and the unique advantages nanoparticles provide in overcoming these challenges are explored. The authors offer fascinating insights into the immunological assets of using nanoparticles as delivery vehicles or adjuvants and present different materials that are being used in nanoparticle-based vaccine development, covering peptides, proteins, polymers, virus-like particles, and liposomes. Its contemporary research insights and practical examples for applications make this volume an inspiring read for researchers and clinicians in vaccinology and immunology. Chapter "Liposome Formulations as Adjuvants for Vaccines" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
In this book, expert international authors critically review the current cutting-edge research in vaccine design and development. Particular emphasis is given to new approaches and technologies.
A comprehensive discussion of various types of nanoengineered biomaterials and their applications In Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications, an expert team of chemists delivers a succinct exploration of the synthesis, characterization, in-vitro and in-vivo drug molecule release, pharmacokinetic activity, pharmacodynamic activity, and the biomedical applications of several types of nanoengineered biomaterials. The editors have also included resources to highlight the most current developments in the field. The book is a collection of valuable and accessible reference sources for researchers in materials chemistry and related disciplines. It uses a functions-directed approach to using organic and inorganic source compounds that translate into biological systems as scaffolds, micelles, dendrimers, and other delivery systems. Nanoengineering of Biomaterials offers readers up-to-date chemistry and material science insights that are readily transferrable to biomedical systems. The book also includes: Thorough introductions to alginate nanoparticle delivery of therapeutics and chitosan-based nanomaterials in biological applications Comprehensive explorations of nanostructured carrageenan as a drug carrier, gellan gum nanoparticles in drug delivery, and guar-gum nanoparticles in the delivery of bioactive molecules Practical discussions of protein-based nanoparticles for drug delivery, solid lipid nanoparticles as drug carriers, and pH-responsive nanoparticles in therapy In-depth examinations of stimuli-responsive nano carriers in drug targeting Perfect for pharmaceutical chemists, materials scientists, polymer chemists, life scientists, and medicinal chemists, Nanoengineering of Biomaterials: Drug Delivery and Biomedical Applications is also an indispensable resource for biologists and bioengineers seeking a one-stop reference on the transferability of materials chemistry and nanotechnology to biomedicine.
The most recent Ebola epidemic that began in late 2013 alerted the entire world to the gaps in infectious disease emergency preparedness and response. The regional outbreak that progressed to a significant public health emergency of international concern (PHEIC) in a matter of months killed 11,310 and infected more than 28,616. While this outbreak bears some unique distinctions to past outbreaks, many characteristics remain the same and contributed to tragic loss of human life and unnecessary expenditure of capital: insufficient knowledge of the disease, its reservoirs, and its transmission; delayed prevention efforts and treatment; poor control of the disease in hospital settings; and inadequate community and international responses. Recognizing the opportunity to learn from the countless lessons of this epidemic, the National Academies of Sciences, Engineering, and Medicine convened a workshop in March 2015 to discuss the challenges to successful outbreak responses at the scientific, clinical, and global health levels. Workshop participants explored the epidemic from multiple perspectives, identified important questions about Ebola that remained unanswered, and sought to apply this understanding to the broad challenges posed by Ebola and other emerging pathogens, to prevent the international community from being taken by surprise once again in the face of these threats. This publication summarizes the presentations and discussions from the workshop.
This comprehensive, authoritative treatise covers all aspects of mucosal vaccines including their development, mechanisms of action, molecular/cellular aspects, and practical applications. The contributing authors and editors of this one-of-a-kind book are very well known in their respective fields. Mucosal Vaccines is organized in a unique format in which basic, clinical, and practical aspects of the mucosal immune system for vaccine development are described and discussed. This project is endorsed by the Society for Mucosal Immunology. - Provides the latest views on mucosal vaccines - Applies basic principles to the development of new vaccines - Links basic, clinical, and practical aspects of mucosal vaccines to different infectious diseases - Unique and user-friendly organization
Nanotechnology has revolutionized the approach to designing and developing novel drug delivery systems. The last two decades have seen a great interest in the use of nanotechnology to offer efficient ways of delivering new and existing drugs and macromolecules. The focus of this book is the application of nanotechnology to deliver drugs and biological agents by the mucosal routes of administration i.e. nasal, pulmonary, buccal, and oral routes. It provides an overview of nanotechnology in drug delivery with a description of different types of nanoparticles, methods of preparation and characterization, and functionalization for site-specific drug delivery. The emphasis is on the use of nanoparticles in treating various cancers and infectious diseases. It broadens the use of nanoparticles by including biologics, including vaccines and immunotherapies, apart from drugs and acknowledges the concerns around the potential toxicity of nanoparticles to the host; several chapters will discuss the biodistribution of these nanoparticles when mucosal routes of administration are employed. Further, the interaction of nanoparticles with the host’s immune cells is discussed. Moreover, it reviews the regulatory aspects of nanotechnology in product development, especially when delivered by the mucosal route of administration. Lastly, discusses the challenges and opportunities to manufacture nanoparticles on an industrial scale. This book is the first of its kind to focus on the design, development and delivery of nanoparticles when administered by different mucosal routes.
Functional Polymer Conjugates for Medicinal Nucleic Acid Delivery, by Ernst Wagner Biodegradable Nanoparticles as Vaccine Adjuvants and Delivery Systems: Regulation of Immune Responses by Nanoparticle-Based Vaccine, by Takami Akagi, Masanori Baba and Mitsuru Akashi Biodegradable Polymeric Assemblies for Biomedical Materials, by Yuichi Ohya, Akihiro Takahashi and Koji Nagahama PEGylation Technology in Nanomedicine, by Yutaka Ikeda and Yukio Nagasaki Cytocompatible Hydrogel Composed of Phospholipid Polymers for Regulation of Cell Functions, by Kazuhiko Ishihara, Yan Xu and Tomohiro Konno Design of Biointerfaces for Regenerative Medicine, by Yusuke Arima, Koichi Kato, Yuji Teramura and Hiroo Iwata Advances in Tissue Engineering Approaches to Treatment of Intervertebral Disc Degeneration: Cells and Polymeric Scaffolds for Nucleus Pulposus Regeneration, by Jeremy J. Mercuri and Dan T. Simionescu Functionalized Biocompatible Nanoparticles for Site-Specific Imaging and Therapeutics, by Ranu K. Dutta, Prashant K. Sharma, Hisatoshi Kobayashi and Avinash C. Pandey
The Vaccine Book, Second Edition provides comprehensive information on the current and future state of vaccines. It reveals the scientific opportunities and potential impact of vaccines, including economic and ethical challenges, problems encountered when producing vaccines, how clinical vaccine trials are designed, and how to introduce vaccines into widespread use. Although vaccines are now available for many diseases, there are still challenges ahead for major diseases, such as AIDS, tuberculosis, and malaria. This book is designed for students, researchers, public health officials, and all others interested in increasing their understanding of vaccines. It answers common questions regarding the use of vaccines in the context of a rapidly expanding anti-vaccine environment. This new edition is completely updated and revised with new and unique topics, including new vaccines, problems of declining immunization rates, trust in vaccines, the vaccine hesitancy, and the social value of vaccines for the community vs. the individual child's risk. - Provides insights into diseases that could be prevented, along with the challenges facing research scientists in the world of vaccines - Gives new ideas about future vaccines and concepts - Introduces new vaccines and concepts - Gives ideas about challenges facing public and private industrial investors in the vaccine area - Discusses the problem of declining immunization rates and vaccine hesitancy