Download Free Nanomedicines For Breast Cancer Theranostics Book in PDF and EPUB Free Download. You can read online Nanomedicines For Breast Cancer Theranostics and write the review.

Nanomedicines for Breast Cancer Theranostics addresses the translational aspects and clinical perspectives of breast cancer nanomedicine from a multidisciplinary perspective. The book summarizes research efforts at the preclinical and clinical stage of nanostructures and nanomedicine for dealing with the important challenge of nanomedicine translation in breast cancer theranostics. This book is an important resource for those working in both academia and industry, focusing on hot topics in biomaterials, biomedical engineering, drug delivery and oncology. Shows how the discovery of new nanomedicines is leading directly to an increase in the early-stage diagnosis of breast cancer Includes coverage of breast cancer nanomedicine standardization and characterization, highlighting newly developed treatments, diagnostics and treatment monitoring tools Explains why the design of nanobiomaterials make them effective drug carriers when treating breast cancer
Nano drug-delivery systems responding to cellular local stimuli, such as pH, temperature and reductive agent's activation, i.e. enzymes, could effectively provide passive-mode desirable release but fail in disease treatment following the biological rhythms of brain tumor. This book is a compilation of research development lead by expert researchers and it establishes a single reference module. It addresses, for the first time, all translational aspects and clinical perspectives of physically stimulated breast-cancer nanotheranostics from a wide-ranging and multidisciplinary perception providing unrivalled and comprehensive knowledge in the field.
Targeted Nanomedicine for Breast Cancer Therapy provides a compilation of treatment approaches for breast cancer, including conventional receptor targeting methods and novel strategies like stimuli responsive methods and tumor micro-environment responsive strategies. This book compiles the most important information on the state-of-the-art therapeutics, including breast cancer biomarkers and design principles of bio-responsive nanosystems. Presented in two parts, sections cover basic and receptor mediated targeting approaches and examine tumor microenvironment mediated approaches. This is a useful book for pharmaceutical scientists and basic and clinical scientists working in the research area of breast cancer and drug discovery both from academics and industry.Worldwide, breast cancer is the most common cancer in women, however, breast cancer therapy is always challenging. This book aims to help researchers remain updated on the most targeted nanomedicine research available. Highlights promising breast cancer targets to help design nanomedicines and stimuli-triggered methods for cancer imaging and treatments Provides in-depth exploration of targeted breast cancer therapy, along with highlights to quickly understand the most important points Explores cutting-edge research in the area of targeted nanomedicine and drug delivery, including nanotheranostics for breast cancer therapy
This Brief focuses on the cancer therapy available till date, from conventional drug delivery to nanomedicine in clinical trial. In addition, it reports on future generation based nanotherapeutics and cancer theranostic agent for effective therapeutic diagnosis and treatment. Breast cancer was chosen as the model system in this review. The authors give emphasis to multiple drug resistance (MDR) and its mechanism and how to overcome it using the nanoparticle approach.
This book is the first to focus specifically on cancer nanotheranostics. Each of the chapters that make up this comprehensive volume is authored by a researcher, clinician, or regulatory agency member known for their expertise in this field. Theranostics, the technology to simultaneously diagnose and treat a disease, is a nascent field that is growing rapidly in this era of personalized medicine. As the need for cost-effective disease diagnosis grows, drug delivery systems that can act as multifunctional carriers for imaging contrast and therapy agents could provide unique breakthroughs in oncology. Nanotechnology has enabled the development of smart theranostic platforms that can concurrently diagnose disease, start primary treatment, monitor response and initiate secondary treatments if required. In oncology, chemotherapeutics have been routinely used. Some drugs have proven effective but all carry risks of adverse side effects. There is growing interest in using remotely triggered drug delivery systems to limit cytotoxicity in the diseased area. This book reviews the use of theranostic nanoparticles for cancer applications over the past decade. First, it briefly discusses the challenges and limitations of conventional cancer treatments, and presents an overview of the use of nanotechnology in treating cancer. These introductory chapters are followed by those exploring cancer diagnosis and a myriad of delivery methods for nanotherapeutics. The book also addresses multifunctional platforms, treatment monitoring, and regulatory considerations. As a whole, the book aims to briefly summarize the development and clinical potential of various nanotheranostics for cancer applications, and to delineate the challenges that must be overcome for successful clinical development and implementation of such cancer theranostics.
Nanotechnology is an interdisciplinary research field that integrates chemistry, engineering, biology, and medicine. Nanomaterials offer tremendous opportunity as well as challenges for researchers. Of course, cancer is one of the world's most common health problems, responsible for many deaths. Exploring efficient anticancer drugs could revolutionize treatment options and help manage cancer mortality. Nanomedicine plays a significant role in developing alternative and more effective treatment strategies for cancer theranostics. This book mainly focuses on the emerging trends using nanomaterials and nanocomposites as alternative anticancer material’s. The book is divided into three main topic areas: how to overcome existing traditional approaches to combat cancer, applying multiple mechanisms to target the cancer cells, and how nanomaterials can be used as effective carriers. The contents highlight recent advances in interdisciplinary research on processing, morphology, structure, and properties of nanostructured materials and their applications to combat cancer.Cancer Nanotheranostics is comprehensive in that it discusses all aspects of cancer nanotechnology. Because of the vast amount of information, it was decided to split this material into two volumes. In the first volume of Cancer Nanotheranostics, we discuss the role of different nanomaterials for cancer therapy, including lipid-based nanomaterials, protein and peptide-based nanomaterials, polymer-based nanomaterials, metal-organic nanomaterials, porphyrin-based nanomaterials, metal-based nanomaterials, silica-based nanomaterials, exosome-based nanomaterials and nano-antibodies. In the second volume, we discuss the nano-based diagnosis of cancer, nano-oncology for clinical applications, nano-immunotherapy, nano-based photothermal cancer therapy, nano-erythrosomes for cancer drug delivery, regulatory perspectives of nanomaterials, limitations of cancer nanotheranostics, the safety of nano-biomaterials for cancer nanotheranostics, multifunctional nanomaterials for targeting cancer nanotheranostics, and the role of artificial intelligence in cancer nanotheranostics.
Multifunctional Theranostic Nanomedicines in Cancer focuses on new trends, applications, and the significance of novel multifunctional nanotheranostics in cancer imaging for diagnosis and treatment. Cancer nanotechnology offers new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions—including targeting, imaging, and therapy—have been intensively studied with the goal of overcoming the limitations of conventional cancer diagnosis and therapy. Thus theranostic nanomedicines have emerged in recent years to provide an efficient and safer alternative in cancer management. This book covers polymer-based therapies, lipid-based therapies, inorganic particle-based therapies, photo-related therapies, radiotherapies, chemotherapies, and surgeries. Multifunctional Theranostic Nanomedicines in Cancer offers an indispensable guide for researchers in academia, industry, and clinical settings; it is also ideal for postgraduate students; and formulation scientists working on cancer. Provides a comprehensive resource of recent scientific progress and novel applications of theranostic nanomedicines Discusses treatment options from a pharmaceutical sciences perspective Includes translational science and targeted CNS cancer treatment
Design of Nanostructures for Theranostics Applications focuses on the theranostics applications of nanostructures. In particular, multifunctional nanoparticles for diagnostics and treatment of different diseases, including those relating to the blood-brain barrier, are discussed in detail. Chapters explore different type of nanostructures, covering design, fabrication, functionalization and optimization, helping readers obtain the desired properties. Written by a diverse range of international academics, this book is a valuable reference resource for those working in both nanoscience and the pharmaceutical industry. Explores how the design of a range of nanomaterials make them effective theranostic agents, including multifunctional core-shell nanostructures, mesoporous silica nanoparticles, and quantum dots Shows how nanomaterials are used effectively for a range of diseases, including breast cancer, prostate cancer and neurological disorders Assesses the pros and cons of using different nanomaterials for different types of treatment
Cancer Nanotheranostics, Volume 2 continues the discussion of the important work being done in this field of cancer nanotechnology. The contents of these two volumes are explained in detail as follows. In the first volume of Cancer Nanotheranostics, we discuss the role of different nanomaterials for cancer therapy including lipid-based nanomaterials, protein and peptide-based nanomaterials, polymer-based nanomaterials, metal-organic nanomaterials, porphyrin-based nanomaterials, metal-based nanomaterials, silica-based nanomaterials, exosome-based nanomaterials, and nano-antibodies. This important second volume discusses nano-based diagnosis of cancer, nano-oncology for clinical applications, nano-immunotherapy, nano-based photothermal cancer therapy, nanoerythrosomes for cancer drug delivery, regulatory perspectives of nanomaterials, limitations of cancer nanotheranostics, safety of nanobiomaterials for cancer nanotheranostics, multifunctional nanomaterials for targeting cancer nanotheranostics, and the role of artificial intelligence in cancer nanotheranostics. Volume 2 is a vital continuation of this two-volume set. Together, these two volumes create a comprehensive and unique examination of this important area of research.
Handbook of Nanomaterials for Cancer Theranostics focuses on recent developments in advanced theranostic nanomedicines from a chemical and biological perspective where the advantages of theranostics are achieved by combining multiple components. The authors explore the pros and cons of theranostic nanomaterials developed in cancer research in the last 15 years, with the different strategies compared and scrutinized. In addition, the book explores how nanomaterials may overcome the regulatory hurdles facing theranostic nanomedicines. This is an important research reference for postgraduates and researchers in nanomedicine and cancer research who want to learn more on how nanomaterials can help create more effective cancer treatments. Highlights the development of smart theranostic nanomaterials to tackle biomedical problems in cancer therapy and diagnostics Explores the regulatory hurdles facing theranostic nanomedicine Discusses how the use of nanomaterials can help create more effective cancer treatments