Download Free Nanomaterials By Severe Plastic Deformation Nanospd5 Book in PDF and EPUB Free Download. You can read online Nanomaterials By Severe Plastic Deformation Nanospd5 and write the review.

Selected, peer reviewed papers from the 5th International Conference on Nanomaterials by Severe Plastic Deformation, NanoSPD5, held in Nanjing, China, on March 21-25, 2011
This cutting-edge book focuses on the emerging area of biomaterials and biodevices that incorporate therapeutic agents, molecular targeting, and diagnostic imaging capabilities The design and development of biomaterials play a significant role in the diagnosis, treatment, and prevention of diseases. When used with highly selective and sensitive biomaterials, cutting-edge biodevices can allow the rapid and accurate diagnosis of disease, creating a platform for research and development, especially in the field of treatment for prognosis and detection of diseases in the early stage. This book emphasizes the emerging area of biomaterials and biodevices that incorporate therapeutic agents, molecular targeting, and diagnostic imaging capabilities. The 15 comprehensive chapters written by leading experts cover such topics as: The use of severe plastic deformation technique to enhance the properties of nanostructured metals Descriptions of the different polymers for use in controlled drug release Chitin and chitosan as renewable healthcare biopolymers for biomedical applications Innovated devices such as “label-free biochips” and polymer MEMS Molecular imprinting and nanotechnology Prussian Blue biosensing applications The evaluation of different types of biosensors in terms of their cost effectiveness, selectivity, and sensitivity Stimuli-responsive polypeptide nanocarriers for malignancy therapeutics
This book presents the most recent results in the area of bulk nanostructured materials and new trends in their severe plastic deformation (SPD) processing, where these techniques are now emerging from the domain of laboratory-scale research into the commercial production of various bulk nanomaterials. Special emphasis is placed on an analysis of the effect of nanostructures in materials fabricated by SPD on mechanical properties (strength and ductility, fatigue strength and life, superplasticity) and functional behavior (shape memory effects, magnetic and electric properties), as well as the numerous examples of their innovative applications. There is a high innovation potential for industrial applications of bulk nanomaterials for structural use (materials with extreme strength) as well as for functional applications such as nanomagnets, materials for hydrogen storage, thermoelectric materials, superconductors, catalysts, and biomedical implants.
Copper has been used for thousands of years. In the centuries, both handicraft and industry have taken advantage of its easy castability and remarkable ductility combined with good mechanical and corrosion resistance. Although its mechanical properties are now well known, the simple f.c.c. structure still makes copper a model material for basic studies of deformation and damage mechanism in metals. On the other hand, its increasing use in many industrial sectors stimulates the development of high-performance and high-efficiency copper-based alloys. After an introduction to classification and casting, this book presents modern techniques and trends in processing copper alloys, such as the developing of lead-free alloys and the role of severe plastic deformation in improving its tensile and fatigue strength. Finally, in a specific section, archaeometallurgy techniques are applied to ancient copper alloys. The book is addressed to engineering professionals, manufacturers and materials scientists.
This book shows how severe plastic deformation techniques could be used to enhance the hydrogen storage properties of metal hybrides. The mechanochemical techniques of ball-milling (BM), Cold Rolling (CR), Equal Chanel Angular Pressing (ECAP) and High Pressure Torsion (HPT) are covered. Each technique is described and critically assessed with respect to its usefulness to process metal hybrides at an industrial scale.
Heterostructured (HS) materials represent an emerging class of materials that are expected to become a major research field for the communities of materials, mechanics, and physics in the next couple of decades. One of the biggest advantages of HS materials is that they can be produced by large-scale industrial facilities and technologies and therefore can be commercialized without the scaling up and high-cost barriers that are often encountered by other advanced materials. This book collects recent papers on the progress in the field of HS materials, especially their fundamental physics. The papers are arranged in a sequence of chapters that will help new researchers entering the field to have a quick and comprehensive understanding of HS materials, including the fundamentals and recent progress in their processing, characterization, and properties.
This book reviews problems in the mechanical behaviour of cyclically loaded metallic materials, primarily with regard to the nature of the fatigue process. The first edition of the book appeared in 1980. The present second edition represents a revised form of the original book and also covers recent developments in the field. As the book focuses on physical-metallurgical aspects, it occupies a unique and important position in the technical literature, which has so far been devoted mainly to engineering metal fatigue problems and their technical solution in specific practical cases. The book provides a compact review of current knowledge on physical metallurgical processes that accompany and affect the fatigue of metallic materials, and also presents the background for applying the new results to practical designing and to the selection of materials in engineering practice. The authors present an updated review of results from countries both in the east and the west and cover a relatively large field in a concise manner. The work will be of value to research workers and students following advanced and post-graduate courses in the fields of materials science and mechanical engineering.
The processing and mechanical behaviour of bulk nanostructured materials are one of the most interesting new fields of research on advanced materials systems. Many nanocrystalline materials possess very high strength with still good ductility, and exhibit high values of fatigue resistance and fracture toughness. There has been continuing interest in these nanomaterials for use in structural and biomedical applications, and this has led to a large number of research programs worldwide. This book focuses on the processing techniques, microstructures, mechanical and physical properties, and applications of bulk nanostructured materials, as well as related fundamental issues. Only since recently can such bulk nanostructured materials be produced in large bulk dimensions, which opens the door to their commercial applications.