Download Free Nanocomposite And Nanocrystalline Materials And Coatings Book in PDF and EPUB Free Download. You can read online Nanocomposite And Nanocrystalline Materials And Coatings and write the review.

Volume is indexed by Thomson Reuters BCI (WoS). Nanocomposite materials are formed by mixing two or more dissimilar materials at the nanoscale in order to control and develop new and improved structures and properties. The properties of nanocomposites depend not only upon the individual components used but also upon the morphology and the interfacial characteristics. Nanocomposite coatings and materials are among the most exciting and fastest-growing areas of research; with new materials being continually developed which often exhibit novel properties that are absent in the constituent materials. Nanocomposite materials and coatings therefore offer enormous potential for new applications including: aerospace, automotive, electronics, biomedical implants, non-linear optics, mechanically reinforced lightweight materials, sensors, nano-wires, batteries, bioceramics, energy conversion and many others.
Nanomaterials-Based Coatings: Fundamentals and Applications presents the fundamental concepts and applications of nanomaterial-based coatings in anticorrosion, antiwear, antibacterial, antifungal, self-cleaning, superhydrophobic, super hard, super heat resistance, solar reflective, photocatalytic and radar absorbing coatings. It is an important resource for those seeking to understand the underlying phenomenal and fundamental mechanisms through which nanoparticles interact with polymeric and metallic matrices to create stronger coatings. As nanomaterials-enforced coatings are smarter, stronger and more durable, the information listed in this book will helps readers understand their usage and further applications.
Nanocrystalline materials exhibit exceptional mechanical properties, representing an exciting new class of structural materials for technological applications. The advancement of this important field depends on the development of new fabrication methods, and an appreciation of the underlying nano-scale and interface effects. This authored book addresses these essential issues, presenting for the first time a fundamental, coherent and current account at the theoretical and practical level of nanocrystalline and nanocomposite bulk materials and coatings. The subject is approached systematically, covering processing methods, key structural and mechanical properties, and a wealth of applications. This is a valuable resource for graduate students studying nanomaterials science and nanotechnologies, as well as researchers and practitioners in materials science and engineering.
Materials development has reached a point where it is difficult for a single material to satisfy the needs of sophisticated applications in the modern world. Nanocomposite films and coatings achieve much more than the simple addition of the constitutents OCo the law of summation fails to work in the nano-world. This book encompasses three major parts of the development of nanocomposite films and coatings: the first focuses on processing and properties, the second concentrates on mechanical performance, and the third deals with functional performance, including wide application areas ranging from mechanical cutting to solar energy and from electronics to medicine. Sample Chapter(s). Chapter 1: Magnetron Sputtered Hard and Yet Tough Nanocomposite Coatings With Case Studies: Nanocrystalline Tin Embedded in Amorphous SiNx (187 KB). Contents: Magnetron Sputtered Hard and Yet Tough Nanocomposite Coatings with Case Studies: Nanocrystalline TiN Embedded in Amorphous SiN x (S Zhang et al.); Magnetron Sputtered Hard and Yet Tough Nanocomposite Coatings with Case Studies: Nanocrystalline TiC Embedded in Amorphous Carbon (S Zhang et al.); Properties of Chemical Vapor Deposited Nanocrystalline Diamond and Nanodiamond/Amorphous Carbon Composite Films (S C Tjong); Synthesis, Characterization and Applications of Nanocrystalline Diamond Films (Z-Q Xu & A Kumar); Properties of Hard Nanocomposite Thin Films (J Musil); Nanostructured, Multifunctional Tribological Coatings (J J Moore et al.); Nanocomposite Thin Films for Solar Energy Conversion (Y-B Yin); Application of Silicon Nanocrystal in Non-Volatile Memory Devices (T P Chen); Nanocrystalline Silicon Films for Thin Film Transistor and Optoelectronic Applications (Y-J Choi et al.); Amorphous and Nanocomposite Diamond-Like Carbon Coatings for Biomedical Applications (T I T Okpalugo et al.); Nanocoatings for Orthopaedic and Dental Application (W-Q Yan). Readership: Undergraduates, postgraduates, researchers, scientists, college and university professors, research professionals, technology investors and developers, research enterprises, R&D research laboratories, academic and research libraries."
In this new handbook, top researchers from around the world discuss recent academic and industrial advances in designing ceramic coatings and materials. They describe the role of nanotechnology in designing high performance nanoceramic coatings and materials in terms of the unique advantages that can be gained from the nano scale, including the latest techniques for the synthesis and processing of ceramic and composite coatings for different applications. - Focuses on the most advanced technologies for industry-oriented nano-ceramic and nano-composite coatings, including recent challenges for scaling up nano-based coatings in industry - Covers the latest evaluation methods for measuring coatings performance - Discusses novel approaches for improving the performance of ceramic and composite coatings and materials via nanotechnology - Provides the most recent and advanced techniques for surface characterization
This book presents the findings of experimental and theoretical (including first-principles molecular dynamics simulation) studies of nanostructured and nanocomposite metal-based materials, and nanoscale multilayer coatings fabricated by physical or chemical vapor deposition, magnetron sputtering, electrospark alloying, ionic layer absorption, contact melting, and high-current electron beam irradiation. It also discusses novel methods of nanocomposite formation, as well as the structure of the deposited films, coatings and other nanoscale materials, their elemental and phase composition, and their physical–mechanical, tribological, magnetic and electrical properties. Lastly, it explores the influence of a various surface modification methods, such as thermal annealing, pulsed laser modification, and thermomechanical and ultrasonic treatment, as well as different properties of nanostructured films.
This book delivers practical insight into a broad range of fields related to hard coatings, from their deposition and characterization up to the hardening and deformation mechanisms allowing the interpretation of results. The text examines relationships between structure/microstructure and mechanical properties from fundamental concepts, through types of coatings, to characterization techniques. The authors explore the search for coatings that can satisfy the criteria for successful implementation in real mechanical applications.
Nanocomposite materials as a special class of nanostructured materials have recently attracted great interest due to their extraordinary mechanical properties as well as thermal stability and oxidation resistance. The unique structure and exceptional properties make nanocomposite materials a possible alternative to traditional polycrystalline materials, which have met their limits in many recent engineering applications. In particular, nanocomposite coatings synthesized by plasma-assisted deposition processes under highly non-equilibrium conditions provide a high potential for new applications as protective and functional coatings in automotive, aerospace, tooling, electronic, or manufacturing industry. This book provides a comprehensive overview of the synthesis of Si-containing hard nanocomposite coatings based on transition metal nitrides by plasma-based thin film processing. It demonstrates the full versatility of these nanocomposites for low Si-containing coatings tailored with superior mechanical properties and novel high Si-containing nanocomposite coatings with extraordinary thermal stability and resistance against oxidation optimized for high-temperature applications. It pays special attention to understanding growth mechanisms of these structures under specific deposition conditions, structure–property relations, and stability of individual constituents to enhance their functionality for various applications.
This book, the second in the Woodhead Publishing Reviews: Mechanical Engineering Series, is a collection of high quality articles (full research articles, review articles, and cases studies) with a special emphasis on research and development materials and surface engineering and its applications. Surface engineering techniques are being used in the automotive, aircraft, aerospace, missile, electronic, biomedical, textile, petrochemical, chemical, moulds and dies, machine tools, and construction industries. Materials science is an interdisciplinary field involving the micro and nano-structure, processing, properties of materials and its applications to various areas of engineering, technology and industry. This book addresses all types of materials, including metals and alloys, polymers, ceramics and glasses, composites, nano-materials, biomaterials, etc. The relationship between micro and nano-structure, processing, properties of materials is discussed. Surface engineering is a truly interdisciplinary topic in materials science that deals with the surface of solid matter. - Written by a highly knowledgeable and well-respected experts in the field - The diversity of the subjects of this book present a range of views based on international expertise