Download Free Nanochemistry For Chemistry Educators Book in PDF and EPUB Free Download. You can read online Nanochemistry For Chemistry Educators and write the review.

For the first time, this book sets out ways to teach the science of nanochemistry at a level suitable for pre-service and in-service teachers in middle and secondary school. The authors draw upon peer-reviewed science education literature for experiments, activities, educational research, and methods of teaching the subject. The book starts with an overview of chemical nanotechnology, including definition of the basic concepts in nanoscience, properties, types of nanostructured materials, synthesis, characterization, and applications. It includes examples of how nanochemistry impacts our daily lives. This theoretical background is an address for teachers even if they do not have enough information about the subject of nanoscale science. Subsequent chapters present best practices for presenting the material to students in a way that improves their attitudes and knowledge toward nanochemistry and STEM subjects in general. The final chapter includes experiments designed for middle and high school students. From basic science through to current and near-future developments for applications of nanomaterials and nanostructures in medicine, electronics, energy, and the environment, users of the book will find a wealth of ideas to convey nanochemistry in an engaging way to students.
For the first time, this book sets out ways to teach the science of nanochemistry at a level suitable for pre-service and in-service teachers in middle and secondary school. The authors draw upon peer-reviewed science education literature for experiments, activities, educational research, and methods of teaching the subject. The book starts with an overview of chemical nanotechnology, including definition of the basic concepts in nanoscience, properties, types of nanostructured materials, synthesis, characterization, and applications. It includes examples of how nanochemistry impacts our daily lives. This theoretical background is an address for teachers even if they do not have enough information about the subject of nanoscale science. Subsequent chapters present best practices for presenting the material to students in a way that improves their attitudes and knowledge toward nanochemistry and STEM subjects in general. The final chapter includes experiments designed for middle and high school students. From basic science through to current and near-future developments for applications of nanomaterials and nanostructures in medicine, electronics, energy, and the environment, users of the book will find a wealth of ideas to convey nanochemistry in an engaging way to students.
Chemistry is often seen as a difficult subject to understand. This book focusses on the triangle model that Alex H. Johnstone developed in the early 1980s. The model has been applied in almost every area of education in chemistry at all stages of learning.
Written by a bestselling author and expert in nanochemistry, this title is ideal for interdisciplinary courses in chemistry, materials science, or physics.
Education is always evolving, and most recently has shifted to increased online or remote learning. Digital Learning and Teaching in Chemistry compiles the established and emerging trends in this field, specifically within the context of learning and teaching in chemistry. This book shares insights about five major themes: best practices for teaching and learning digitally, digital learning platforms, virtual visualisation and laboratory to promote learning in science, digital assessment, and building communities of learners and educators. The authors are chemistry instructors and researchers from nine countries, contributing an international perspective on digital learning and teaching in chemistry. While the chapters in this book span a wide variety of topics, as a whole, they focus on using technology and digital platforms as a method for supporting inclusive and meaningful learning. The best practices and recommendations shared by the authors are highly relevant for modern chemistry education, as teaching and learning through digital methods is likely to persist. Furthermore, teaching chemistry digitally has the potential to bring greater equity to the field of chemistry education in terms of who has access to quality learning, and this book will contribute to that goal. This book will be essential reading for those working in chemical education and teaching. Yehudit Judy Dori is internationally recognised, formerly Dean of the Faculty of Education of Science and Technology at the Technion Israel Institute of Technology and won the 2020 NARST Distinguished Contributions to Science Education through Research Award–DCRA for her exceptional research contributions. Courtney Ngai and Gabriela Szteinberg are passionate researchers and practitioners in the education field. Courtney Ngai is the Associate Director of the Office of Undergraduate Research and Artistry at Colorado State University. Gabriela Szteinberg serves as Assistant Dean and Academic Coordinator for the College of Arts and Sciences at Washington University in St. Louis.
This volume includes several perspectives on how to connect the United Nations Sustainable Development Goals with the 12 principles of green chemistry, and green chemistry education.
Reasoning about structure-reactivity and chemical processes is a key competence in chemistry. Especially in organic chemistry, students experience difficulty appropriately interpreting organic representations and reasoning about the underlying causality of organic mechanisms. As organic chemistry is often a bottleneck for students’ success in their career, compiling and distilling the insights from recent research in the field will help inform future instruction and the empowerment of chemistry students worldwide. This book brings together leading research groups to highlight recent advances in chemistry education research with a focus on the characterization of students’ reasoning and their representational competencies, as well as the impact of instructional and assessment practices in organic chemistry. Written by leaders in the field, Student Reasoning in Organic Chemistry is ideal for chemistry education researchers, instructors and practitioners, and graduate students in chemistry education.
International interest in nanoscience research has flourished in recent years, as it becomes an integral part in the development of future technologies. The diverse, interdisciplinary nature of nanoscience means effective communication between disciplines is pivotal in the successful utilization of the science. Nanochemistry: A Chemical Approach to Nanomaterials is the first textbook for teaching nanochemistry and adopts an interdisciplinary and comprehensive approach to the subject. It presents a basic chemical strategy for making nanomaterials and describes some of the principles of materials self-assembly over 'all' scales. It demonstrates how nanometre and micrometre scale building blocks (with a wide range of shapes, compositions and surface functionalities) can be coerced through chemistry to organize spontaneously into unprecedented structures, which can serve as tailored functional materials. Suggestions of new ways to tackle research problems and speculations on how to think about assembling the future of nanotechnology are given. Primarily designed for teaching, this book will appeal to graduate and advanced undergraduate students. It is well illustrated with graphical representations of the structure and form of nanomaterials and contains problem sets as well as other pedagogical features such as further reading, case studies and a comprehensive bibliography.
Nanotechnology is a new and emerging discipline that is multidisciplinary and interdisciplinary. The usage of nanosystems, nanomaterials, nano-devices, etc. permeates all aspects of society. Cancer targeting and curing nanosystems are being introduced into the biomedical and pharmaceutical industries; so are lightweight energy absorbing or blast-proof nanohybrid material in the aerospace, automotive and marine industries and high-efficiency energy harvesting nanomaterials, etc. Society has a vested interest in knowing how these new materials, devices and systems are changing the economy and similar landscapes. The book outlines the regulatory and environmental issues related to nanotechnology per industry, offers guidelines in assessing the risks and discusses the legal and socioeconomical issues involved. Case studies will be utilized to provide examples of the positive and negative impacts of nanotechnology. - Provides an overview and the basis for understanding the critical importance of the reactivity and efficacy of nanomaterials and the emerging role of nanotechnology in society - Explains the fundamentals, ethics, regulatory and environmental issues of nanosafety and how they shape the emerging nanotechnology industry and markets and includes extensive lists of glossary terms, terminologies and concepts needed for Material Data Safety Sheets - Discusses the relevance and specificity of nanosafety issues per industry and includes discussions on the "Homeland Security and Infrastructure Industries" of interest to society in general - Includes nanotechnology risk assessment and delineates and quantifies the risk assessment process for nanotechnology safety of paramount importance to most industries and systems - Outlines the legal and intellectual property ramifications of nanotechnology and its impact on productivity and society
Nanotechnology is changing the world in a very big way, but at the atomic and sub-atomic level. Although the roots of nanotechnology can be traced back to more than a century ago, the last three decades have witnessed an explosion of nano-based technologies and products. This reference work examines the history, current status, and future directions of nanotechnology through an exhaustive search of the technical and scientific literature. The more than 4000 bibliographic citations it includes are carefully organized into core subject areas, and a geographic and subject index allows readers to quickly locate documents of interest. Although a sense of the global reach and interest in nanotechnology can be gleaned from the reference sections of countless journal articles, conference papers, and books, this is the only reference work providing an in-depth global perspective that is ready-made for nanotechnology professionals and those interested in learning more about all things nanotechnology. Despite the abundance of online resources, there is still an urgent need for well-researched, well-presented, concise, and thematically organized reference works. Instead of relying on wiki pages, citation aggregators, and related websites, the author searched the databases and databanks of scholarly literature search providers such as EBSCO, ProQuest, PUBMED, STN International, and Thomson Reuters. In addition, he used select serials-related databases to account for pertinent documents from countries in which English is not the primary national language (i.e., China Online Journals, e-periodica, J-STAGE, and SciELO Brazil among others).