Download Free Multiple Hypergeometric Functions And Applications Book in PDF and EPUB Free Download. You can read online Multiple Hypergeometric Functions And Applications and write the review.

Significant revision of classic reference in special functions.
TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.
This book presents the essential role of mathematical modelling and computational methods in representing physical phenomena mathematically, focusing on the significance of the I-function. Serving as a generalized form of special functions, particularly generalised hypergeometric functions, the I-function emerges from solving dual integral equations, prevalent in scenarios such as mixed boundary problems in potential theory, energy diffusion, and population dynamics. Offers the most recent developments on I-function and their application in mathematical modelling and possible applications to some other research areas Expands the area of special functions that have been developed and applied in a variety of fields, such as combinatory, astronomy, applied mathematics, physics, and engineering Highlights the importance of fundamental results and techniques based on the theory of complex analysis and emphasizes articles devoted to the mathematical aspect and applications Shows the importance of fundamental results and techniques derived from the theory of complex analysis, laying the groundwork for further exploration and potential applications of the I-function in solving complex problems Discusses dual integral equations solving and its crucial role in various physical phenomena, such as potential theory and population dynamics Expanding the field of special functions, I-function and Its Applications serves as a platform for recent theories and applications, offering students, researchers, and scholars of Mathematics insight into advanced mathematical techniques and their practical implications across various fields.
This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.
Zeta and q-Zeta Functions and Associated Series and Integrals is a thoroughly revised, enlarged and updated version of Series Associated with the Zeta and Related Functions. Many of the chapters and sections of the book have been significantly modified or rewritten, and a new chapter on the theory and applications of the basic (or q-) extensions of various special functions is included. This book will be invaluable because it covers not only detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions, but stimulating historical accounts of a large number of problems and well-classified tables of series and integrals. Detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions
A collection of articles on various aspects of q-series and special functions dedicated to Mizan Rahman. It also includes an article by Askey, Ismail, and Koelink on Rahman’s mathematical contributions and how they influenced the recent upsurge in the subject.
This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students. Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certain equivalent combinatorial properties on representation formulas, and the irreducibility of representations is proved directly related to algebraic varieties. The book offers a valuable reference guide for mathematicians and scientists alike. As it is largely self-contained – readers need only a minimal background in calculus and linear algebra – it can also be used as a textbook.