Download Free Multiple Abiotic Stresses Molecular Physiological And Genetic Responses And Adaptations In Cereals Book in PDF and EPUB Free Download. You can read online Multiple Abiotic Stresses Molecular Physiological And Genetic Responses And Adaptations In Cereals and write the review.

The edited book highlights various emerging Omics tools and techniques that are currently being used in the analysis of responses to different abiotic stress in agronomically important cereals and their applications in enhancing tolerance mechanism. Plants are severely challenged by diverse abiotic stress factors such as low water availability (drought), excess water (flooding/ waterlogging), extremes of temperatures (cold, chilling, frost, and heat), salinity, mineral deficiency, and heavy metal toxicity. Agronomically important cereal crops like Rice, Wheat, Maize, Sorghum, Pearl Millet, Barley, Oats, Rye, Foxtail Millets etc. that are the major sources of food material and nutritional components for human health are mostly exposed to abiotic stresses during the critical phases of flowering and grain yield. Different Omics platforms like genomics, transcriptomics proteomics, metabolomics and phenomics, in conjunction with breeding and transgenic technology, and high throughput technologies like next generation sequencing, epigenomics, genome editing and CRISPR-Cas technology have emerged altogether in understanding abiotic stress response and strengthening defense and tolerance mechanism of different cereals. This book is beneficial to different universities and research institutes working with different cereal crops in the areas of stress physiology, stress-associated genes and proteins, genomics, proteomics, genetic engineering, and other fields of molecular plant physiology. The book can also be used as advanced textbook for the course work of research and master’s level students. It will be of use to people involved in ecological studies and sustainable agriculture. The proposed book bring together the global leaders working on environmental stress in different cereal crops and motivate scientists to explore new horizons in the relevant areas of research.
Abiotic Stresses in Wheat: Unfolding the Challenges presents the current challenges, possibilities, and advancements in research-based management strategies for the adaptation of wheat crops under abiotic-stressed growth conditions. This book comprehensively discusses different abiotic stress conditions in wheat, and also covers current trends in their mitigation using advanced tools to develop resilience in wheat crops. Chapters provide insight into the genetic, biochemical, physiological, molecular, and transgenic advances and emerging frontiers for mitigating the effects of wheat abiotic stresses. This text is the first resource to include all abiotic stresses in one volume, providing important translational insights and efficient comparison. Describes advances in conventional and modern breeding approaches in countering the effect of wheat abiotic stresses Highlights the role of physiological, biochemical and OMICS strategies Includes coverage of biotechnological tools such as whole genome sequencing, nanotechnology, and genome editing
This book is an elaborate account of the effects of abiotic stressors on cereals crops. It not only discusses the impacts of abiotic stress on the crops but also the physiological, biochemical, and molecular strategies applied in plant of cereal crops to alleviate the detrimental effects of abiotic stressors. The book also elaborates on various molecular response to the abiotic stress. It is a knowledgebase providing readers latest updates on development of high-performance diagnostics, stress induced responses, genomics, phenomics and metabolomics involved in abiotic stress tolerance of cereal food crops. The book is useful for plant scientists and research scholars. Post graduate students of agriculture sciences, plant physiology, botany and biochemistry also benefit from this compilation.
This two-volume set highlights the various innovative and emerging techniques and molecular applications that are currently being used in plant abiotic stress physiology. Volume 1: Responses and Adaptations focuses on the responses and adaptations of plants to stress factors at the cellular and molecular levels and offers a variety of advanced management strategies and technologies. Volume 2: Molecular Advancements introduces a range of state-of-the-art molecular advances for the mitigation of abiotic stress in plants. With contributions from specialists in the field, Volume 1 first discusses the physiology and defense mechanisms of plants and the various kinds of stress, such as from challenging environments, climate change, and nutritional deficiencies. It goes on to discuss trailblazing management techniques that include genetics approaches for improving abiotic stress tolerance in crop plants along with CRISPR/CAS-mediated genome editing technologies. Volume 2 discusses how plants have developed diverse physiological and molecular adjustments to safeguard themselves under challenging conditions and how emerging new technologies can utilize these plant adaptations to enhance plant resistance. These include using plant-environment interactions to develop crop species that are resilient to climate change, applying genomics and phenomics approaches from the study of abiotic stress tolerance and more. Agriculture today faces countless challenges to meet the rising need for sustainable food supplies and guarantees of high-quality nourishment for a quickly increasing population. To ensure sufficient food production, it is necessary to address the difficult environmental circumstances that are causing cellular oxidative stress in plants due to abiotic factors, which play a defining role in shaping yield of crop plants. These two volumes help to meet these challenges by providing a rich source of information on plant abiotic stress physiology and effective management techniques.
Environmental insults such as extremes of temperature, extremes of water status as well as deteriorating soil conditions pose major threats to agriculture and food security. Employing contemporary tools and techniques from all branches of science, attempts are being made worldwide to understand how plants respond to abiotic stresses with the aim to help manipulate plant performance that will be better suited to withstand these stresses. This book on abiotic stress attempts to search for possible answers to several basic questions related to plant responses towards abiotic stresses. Presented in this book is a holistic view of the general principles of stress perception, signal transduction and regulation of gene expression. Further, chapters analyze not only model systems but extrapolate interpretations obtained from models to crops. Lastly, discusses how stress-tolerant crop or model plants have been or are being raised through plant breeding and genetic engineering approaches. Twenty three chapters, written by international authorities, integrate molecular details with overall plant structure and physiology, in a text-book style, including key references.
This two-volume set highlights the various innovative and emerging techniques and molecular applications that are currently being used in plant abiotic stress physiology. Volume 1: Responses and Adaptations focuses on the responses and adaptations of plants to stress factors at the cellular and molecular levels and offers a variety of advanced management strategies and technologies. Volume 2: Molecular Advancements introduces a range of state-of-the-art molecular advances for the mitigation of abiotic stress in plants. With contributions from specialists in the field, Volume 1 first discusses the physiology and defense mechanisms of plants and the various kinds of stress, such as from challenging environments, climate change, and nutritional deficiencies. It goes on to discuss trailblazing management techniques that include genetics approaches for improving abiotic stress tolerance in crop plants along with CRISPR/CAS-mediated genome editing technologies. Volume 2 discusses how plants have developed diverse physiological and molecular adjustments to safeguard themselves under challenging conditions and how emerging new technologies can utilize these plant adaptations to enhance plant resistance. These include using plant-environment interactions to develop crop species that are resilient to climate change, applying genomics and phenomics approaches from the study of abiotic stress tolerance and more. Agriculture today faces countless challenges to meet the rising need for sustainable food supplies and guarantees of high-quality nourishment for a quickly increasing population. To ensure sufficient food production, it is necessary to address the difficult environmental circumstances that are causing cellular oxidative stress in plants due to abiotic factors, which play a defining role in shaping yield of crop plants. These two volumes help to meet these challenges by providing a rich source of information on plant abiotic stress physiology and effective management techniques.
Advances in Rice Research for Abiotic Stress Tolerance provides an important guide to recognizing, assessing and addressing the broad range of environmental factors that can inhibit rice yield. As a staple food for nearly half of the world’s population, and in light of projected population growth, improving and increasing rice yield is imperative. This book presents current research on abiotic stresses including extreme temperature variance, drought, hypoxia, salinity, heavy metal, nutrient deficiency and toxicity stresses. Going further, it identifies a variety of approaches to alleviate the damaging effects and improving the stress tolerance of rice. Advances in Rice Research for Abiotic Stress Tolerance provides an important reference for those ensuring optimal yields from this globally important food crop. Covers aspects of abiotic stress, from research, history, practical field problems faced by rice, and the possible remedies to the adverse effects of abiotic stresses Provides practical insights into a wide range of management and crop improvement practices Presents a valuable, single-volume sourcebook for rice scientists dealing with agronomy, physiology, molecular biology and biotechnology
Nanotechnology for Abiotic Stress Tolerance and Management in Crop Plants reviews the most recent literature on the role of nanomaterials in achieving sustainability in crop production in stressful environments. This book explores the adverse conditions caused by abiotic stress to crop plants, and the methods by which these conditions can be potentially overcome through developments in nanoscience and nanotechnology. Abiotic stresses such as drought, salinity, temperature stress, excessive water, heavy metal stress, UV stress etc. are major factors which may adversely affect the growth, development, and yield of crops. While recent research for ways of overcoming the physiological and biochemical changes brought on by these stresses has focused on genetic engineering of plants, additional research continues into alternative strategies to develop stress tolerant crops, including the use of nanoscience and nanotechnology. Providing an in-depth summary of research on nanomaterials and nano-based devices for field monitoring of crops, this book will serve as an ideal reference for academics, professionals, researchers, and students working in the field of agriculture, nanotechnology, plant science, material science, and crop production. Presents advancements in our understanding of molecular and physiological interactions between nanoparticles and crop plants Includes figures and illustrations to help readers visualize and easily understand the role of nanomaterials Serves as an ideal reference for those studying smart nanomaterials, biosensors, and nanodevices for real-time plant stress measurement