Download Free Multinary Alloys Based On Iv Vi And Iv Vi2 Semiconductors Book in PDF and EPUB Free Download. You can read online Multinary Alloys Based On Iv Vi And Iv Vi2 Semiconductors and write the review.

IV-VI and IV-VI2 semiconductors have attracted considerable attention due to their applications in the fabrication of electronic and optoelectronic devices as infrared lasers and detectors. The electrical properties of these semiconductors can also be tuned by adding impurity atoms. Because of their wide application in various devices, the search for new semiconductor materials and the improvement of existing materials is an important field of study. Doping with impurities is a common method of modifying and diversifying the properties of physical and chemical semiconductors. This book covers all known information about the phase relations in multinary systems based on IV-VI and IV-VI2 semiconductors, providing the first systematic account of phase equilibria in multinary systems based on IV-VI and IV-VI2 semiconductors and making research originally published in Ukrainian and Russian accessible to the wider scientific community. This book will be of interest to undergraduate and graduate students studying materials science, solid state chemistry, and engineering. It will also be relevant for researchers at industrial and national laboratories, in addition to researchers of phase equilibria, inorganic chemists, and solid state physicists. Key Features: Provides up-to-date experimental and theoretical information Allows readers to synthesize semiconducting materials with predetermined properties Delivers a critical evaluation of many industrially important systems presented in the form of two-dimensional sections for the condensed phases
This book will be of interest to undergraduate and graduate students studying materials science, solid state chemistry, and engineering.
IV–VI and IV–VI2 semiconductors have attracted considerable attention due to their applications in the fabrication of electronic and optoelectronic devices as light-emitting diodes and solar cells. The electrical properties of these semiconductors can also be tuned by adding impurity atoms. Because of their wide application in various devices, the search for new semiconductor materials and the improvement of existing materials is an important field of study. Doping with impurities is a common method of modifying and diversifying the properties of physical and chemical semiconductors. This book covers all known information about phase relations in quaternary systems based on IV–VI and IV–VI2 semiconductors, providing the first systematic account of phase equilibria in quaternary systems based on IV–VI and IV–VI2 semiconductors and making research originally published in Ukrainian and Russian accessible to the wider scientific community. This book will be of interest to undergraduate and graduate students studying materials science, solid-state chemistry, and engineering. It will also be relevant for researchers at industrial and national laboratories, in addition to phase diagram researchers, inorganic chemists, and solid-state physicists. Key Features: • Provides up-to-date experimental and theoretical information. • A source of information for synthesizing semiconducting materials with predetermined properties. • Delivers a critical evaluation of many industrially important systems presented in the form of two-dimensional sections for the condensed phases.
By browsing about 10 000 000 scientific articles of over 200 major journals mainly in a 'cover to cover approach' some 200 000 publications were selected. The extracted data is part of the following fundamental material research fields: crystal structures (S), phase diagrams (also called constitution) (C) and the comprehensive field of intrinsic physical properties (P). This work has been done systematically starting with the literature going back to 1900. The above mentioned research field codes (S, C, P) as well as the chemical systems investigated in each publication were included in the present work. The aim of the Inorganic Substances Bibliography is to provide researchers with a comprehensive compilation of all up to now published scientific publications on inorganic systems in only three handy volumes.
Section 1 addresses the most recent developments in processes at the semiconductor-solution interface include etching, oxidation, passivation, film growth, porous semiconductor formation, electrochemical, photoelectrochemical, electroluminescence and photoluminescence processes, electroanalytical measurements and related topics on both elemental and compound semiconductors. Section 2 addresses the most recent developments in compound semiconductors encompassing advanced devices, materials growth, characterization, processing, device fabrication, reliability, and related topics.
IV-VI and IV-VI2 semiconductors are among the most interesting materials in semiconductor physics. The electrical properties of these semiconductors can also be tuned by adding impurity atoms. These semiconductors either have already found use or are promising materials for infrared sensors and sources, thermoelectric elements, solar cells, memory elements, etc. The basic characteristics of these compounds, namely, narrow band gap, high permittivity, relatively high radiation resistance, high mobility of charge carriers, and high bond ionicity, are unique among semiconductor substances. Because of their wide application in various devices, the search for new semiconductor materials and the improvement of existing materials is an important field of study. Doping with impurities is a common method of modifying and diversifying the properties of physical and chemical semiconductors. This book covers all known information about phase relations in ternary systems based on IV-VI and IV-VI2 semiconductors, providing еhe first systematic account of phase equilibria in ternary systems based on IIV-VI and IV-VI2 semiconductors and making research originally published in Russian accessible to the wider scientific community. This book will be of interest to undergraduate and graduate students studying materials science, solid state chemistry, and engineering. It will also be relevant for researchers at industrial and national laboratories, in addition to phase diagram researchers, inorganic chemists, and solid state physicists. Provides up-to-date experimental and theoretical information Allows readers to synthesize semiconducting materials with predetermined properties Delivers a critical evaluation of many industrially important systems presented in the form of two-dimensional sections for the condensed phases
Multinary compounds are now used in a wide range of devices, including photovoltaic solar cells, light emitters and detectors, and piezoelectric actuators. Ternary and Multinary Compounds provides an interdisciplinary forum for scientists and engineers working on fundamental and applied aspects of these materials. The volume focuses on optoelectronic properties, electronic band structure, charge carrier transport, optical and magnetic properties, and superconductivity. It includes chapters on the research and development of new techniques and novel materials, such as laser ablation deposition and ferroelectrics.
Materials for type III solar cells have branched into a series of generic groups. These include organic ‘small molecule’ and polymer conjugated structures, fullerenes, quantum dots, copper indium gallium selenide nanocrystal films, dyes/TiO2 for Grätzel cells, hybrid organic/inorganic composites and perovskites. Whilst the power conversion efficiencies of organic solar cells are modest compared to other type III photovoltaic materials, plastic semiconductors provide a cheap route to manufacture through solution processing and offer flexible devices. However, other types of materials are proving to be compatible with this type of processing whilst providing higher device efficiencies. As a result, the field is experiencing healthy competition between technologies that is pushing progress at a fast rate. In particular, perovskite solar cells have emerged very recently as a highly disruptive technology with power conversion efficiencies now over 20%. Perovskite cells, however, still have to address stability and environmental issues. With such a diverse range of materials, it is timely to capture the different technologies into a single volume of work. This book will give a collective insight into the different roles that nanostructured materials play in type III solar cells. This will be an essential text for those working with any of the devices highlighted above, providing a fundamental understanding and appreciation of the potential and challenges associated with each of these technologies.