Download Free Multidimensional Residue Theory And Applications Book in PDF and EPUB Free Download. You can read online Multidimensional Residue Theory And Applications and write the review.

Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to a wide range of situations, most notably to membership problems, such as the Briançon–Skoda theorem and Hilbert's Nullstellensatz, to arithmetic intersection theory and to tropical geometry. This book will supersede the existing literature in this area, which dates back more than three decades. It will be appreciated by mathematicians and graduate students in multivariate complex analysis. But thanks to the gentle treatment of the one-dimensional case in Chapter 1 and the rich background material in the appendices, it may also be read by specialists in arithmetic, diophantine, or tropical geometry, as well as in mathematical physics or computer algebra.
This book deals with integral representations of holomorphic functions of several complex variables, the multidimensional logarithmic residue, and the theory of multidimensional residues. Applications are given to implicit function theory, systems of nonlinear equations, computation of the multiplicity of a zero of a mapping, and computation of combinatorial sums in closed form. Certain applications in multidimensional complex analysis are considered. The monograph is intended for specialists in theoretical and applied mathematics and theoretical physics, and for postgraduate and graduate students interested in multidimensional complex analysis or its applications.
The Second Edition of this book includes an abundance of examples to illustrate advanced concepts and brings out in a text book setting the algorithms for bivariate polynomial matrix factorization results that form the basis of two-dimensional systems theory. Algorithms and their implementation using symbolic algebra are emphasized.
The determination of food authenticity is a vital component of quality control. Its importance has been highlighted in recent years by high-profile cases in the global supply chain such as the European horsemeat scandal and the Chinese melamine scandal which led to six fatalities and the hospitalisation of thousands of infants. As well as being a safety concern, authenticity is also a quality criterion for food and food ingredients. Consumers and retailers demand that the products they purchase and sell are what they purport to be. This book covers the most advanced techniques used for the authentication of a vast number of products around the world. The reader will be informed about the latest pertinent analytical techniques. Chapters focus on the novel techniques & markers that have emerged in recent years. An introductory section presents the concepts of food authentication while the second section examines in detail the analytical techniques for the detection of fraud relating to geographical, botanical, species and processing origin and production methods of food materials and ingredients. Finally, the third section looks at consumer attitudes towards food authenticity, the application of bioinformatics to this field, and the Editor’s conclusions and future outlook. Beyond being a reference to researchers working in food authentication it will serve as an essential source to analytical scientists interested in the field and food scientists to appreciate analytical approaches. This book will be a companion to under- and postgraduate students in their wander in food authentication and aims to be useful to researchers in universities and research institutions.
Iwasawa theory began in the late 1950s with a series of papers by Kenkichi Iwasawa on ideal class groups in the cyclotomic tower of number fields and their relation to $p$-adic $L$-functions. The theory was later generalized by putting it in the context of elliptic curves and modular forms. The main motivation for writing this book was the need for a total perspective of Iwasawa theory that includes the new trends of generalized Iwasawa theory. Another motivation is to update the classical theory for class groups, taking into account the changed point of view on Iwasawa theory. The goal of this second part of the three-part publication is to explain various aspects of the cyclotomic Iwasawa theory of $p$-adic Galois representations.
Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functions in complex space en and others. Subharmonic functions and the foundations ofthe associated classical poten tial theory are sufficiently well exposed in the literature, and so we introduce here only a few fundamental results which we require. More detailed expositions can be found in the monographs of Privalov (1937), Brelot (1961), and Landkof (1966). See also Brelot (1972), where a history of the development of the theory of subharmonic functions is given.
Infinite series, and their analogues-integral representations, became fundamental tools in mathematical analysis, starting in the second half of the seventeenth century. They have provided the means for introducing into analysis all o( the so-called transcendental functions, including those which are now called elementary (the logarithm, exponential and trigonometric functions). With their help the solutions of many differential equations, both ordinary and partial, have been found. In fact the whole development of mathematical analysis from Newton up to the end of the nineteenth century was in the closest way connected with the development of the apparatus of series and integral representations. Moreover, many abstract divisions of mathematics (for example, functional analysis) arose and were developed in order to study series. In the development of the theory of series two basic directions can be singled out. One is the justification of operations with infmite series, the other is the creation of techniques for using series in the solution of mathematical and applied problems. Both directions have developed in parallel Initially progress in the first direction was significantly smaller, but, in the end, progress in the second direction has always turned out to be of greater difficulty.
The present monograph is devoted to the complex theory of differential equations. Not yet a handbook, neither a simple collection of articles, the book is a first attempt to present a more or less detailed exposition of a young but promising branch of mathematics, that is, the complex theory of partial differential equations. Let us try to describe the framework of this theory. First, simple examples show that solutions of differential equations are, as a rule, ramifying analytic functions. and, hence, are not regular near points of their ramification. Second, bearing in mind these important properties of solutions, we shall try to describe the method solving our problem. Surely, one has first to consider differential equations with constant coefficients. The apparatus solving such problems is well-known in the real the ory of differential equations: this is the Fourier transformation. Un fortunately, such a transformation had not yet been constructed for complex-analytic functions and the authors had to construct by them selves. This transformation is, of course, the key notion of the whole theory.
This book presents new results in the theory of the double Mellin-Barnes integrals popularly known as the general H-function of two variables.A general integral convolution is constructed by the authors and it contains Laplace convolution as a particular case and possesses a factorization property for one-dimensional H-transform. Many examples of convolutions for classical integral transforms are obtained and they can be applied for the evaluation of series and integrals.
Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1).