Download Free Multidimensional Integral Representations Book in PDF and EPUB Free Download. You can read online Multidimensional Integral Representations and write the review.

The monograph is devoted to integral representations for holomorphic functions in several complex variables, such as Bochner-Martinelli, Cauchy-Fantappiè, Koppelman, multidimensional logarithmic residue etc., and their boundary properties. The applications considered are problems of analytic continuation of functions from the boundary of a bounded domain in C^n. In contrast to the well-known Hartogs-Bochner theorem, this book investigates functions with the one-dimensional property of holomorphic extension along complex lines, and includes the problems of receiving multidimensional boundary analogs of the Morera theorem. This book is a valuable resource for specialists in complex analysis, theoretical physics, as well as graduate and postgraduate students with an understanding of standard university courses in complex, real and functional analysis, as well as algebra and geometry.
This book deals with integral representations of holomorphic functions of several complex variables, the multidimensional logarithmic residue, and the theory of multidimensional residues. Applications are given to implicit function theory, systems of nonlinear equations, computation of the multiplicity of a zero of a mapping, and computation of combinatorial sums in closed form. Certain applications in multidimensional complex analysis are considered. The monograph is intended for specialists in theoretical and applied mathematics and theoretical physics, and for postgraduate and graduate students interested in multidimensional complex analysis or its applications.
This monograph should be of interest to a broad spectrum of readers: specialists in discrete and continuous mathematics, physicists, engineers, and others interested in computing sums and applying complex analysis in discrete mathematics. It contains investigations on the problem of finding integral representations for and computing finite and infinite sums (generating functions); these arise in practice in combinatorial analysis, the theory of algorithms and programming on a computer, probability theory, group theory, and function theory, as well as in physics and other areas of knowledge. A general approach is presented for computing sums and other expressions in closed form by reducing them to one-dimensional and multiple integrals, most often to contour integrals.
The Bochner-Martinelli integral representation for holomorphic functions or'sev eral complex variables (which has already become classical) appeared in the works of Martinelli and Bochner at the beginning of the 1940's. It was the first essen tially multidimensional representation in which the integration takes place over the whole boundary of the domain. This integral representation has a universal 1 kernel (not depending on the form of the domain), like the Cauchy kernel in e . However, in en when n > 1, the Bochner-Martinelli kernel is harmonic, but not holomorphic. For a long time, this circumstance prevented the wide application of the Bochner-Martinelli integral in multidimensional complex analysis. Martinelli and Bochner used their representation to prove the theorem of Hartogs (Osgood Brown) on removability of compact singularities of holomorphic functions in en when n > 1. In the 1950's and 1960's, only isolated works appeared that studied the boundary behavior of Bochner-Martinelli (type) integrals by analogy with Cauchy (type) integrals. This study was based on the Bochner-Martinelli integral being the sum of a double-layer potential and the tangential derivative of a single-layer potential. Therefore the Bochner-Martinelli integral has a jump that agrees with the integrand, but it behaves like the Cauchy integral under approach to the boundary, that is, somewhat worse than the double-layer potential. Thus, the Bochner-Martinelli integral combines properties of the Cauchy integral and the double-layer potential.
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Queueing systems and networks are being applied to many areas of technology today, including telecommunications, computers, satellite systems, and traffic processes. This timely book, written by 26 of the most respected and influential researchers in the field, provides an overview of fundamental queueing systems and networks as applied to these technologies. Frontiers in Queueing: Models and Applications in Science and Engineering was written with more of an engineering slant than its predecessor, Advances in Queueing: Theory, Methods, and Open Problems. The earlier book was primarily concerned with methods, and was more theoretically oriented. This new volume, meant to be a sequel to the first book, was written by scientists and queueing theorists whose expertise is in technology and engineering, allowing readers to answer questions regarding the technicalities of related methods from the earlier book. Each chapter in the book surveys the classes of queueing models and networks, or the applied methods in queueing, and is followed by a discussion of open problems and future research directions. The discussion of these future trends is especially important to novice researchers, students, and even their advisors, as it provides the perspectives of eminent scientists in each area, thus showing where research efforts should be focused. Frontiers in Queueing: Models and Applications in Science and Engineering also includes applications to vital areas of engineering and technology, specifically, telecommunications, computers and computer networks, satellite systems, traffic processes, and more applied methods such as simulation, statistics, and numerical methods. All researchers, from students to advanced professionals, can benefit from the sound advice and perspective of the contributors represented in this book.
Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1).
From the reviews: "... In sum, the volume under review is the first quarter of an important work that surveys an active branch of modern mathematics. Some of the individual articles are reminiscent in style of the early volumes of the first Ergebnisse series and will probably prove to be equally useful as a reference; ...for the appropriate reader, they will be valuable sources of information about modern complex analysis." Bulletin of the Am.Math.Society, 1991 "... This remarkable book has a helpfully informal style, abundant motivation, outlined proofs followed by precise references, and an extensive bibliography; it will be an invaluable reference and a companion to modern courses on several complex variables." ZAMP, Zeitschrift für Angewandte Mathematik und Physik, 1990