Download Free Multiband Rf Microwave Front End Receiver Design For Multi Standard Applications Book in PDF and EPUB Free Download. You can read online Multiband Rf Microwave Front End Receiver Design For Multi Standard Applications and write the review.

With the demand for the wireless communication system to support multiple frequency bands introduced by new standards, multi-standard transceivers with low cost, low power, and high integrity start to receive more attention in recent years. As the number of operating frequency bands increases, the number of external filters and low-noise amplifiers in a commonly used multi-standard receiver with parallel architecture increases. It leads to high power consumption and low feasibility for high integration design. Compared to the RF transmitter, the design of the RF receiver front end is considered to be more challenging due to the increased signal interference/noise in the communication path, which often can be neglected in transmitter design due to the large discrepancy between the noise level and the signal level. Generally, the most important performance parameters of a receiver front end are selectivity and sensitivity. From the view of microwave design, the selectivity of a receiver front end is strongly dependent on the design of the microwave filters, which determines the bandwidth and signal selectivity. The sensitivity of a receiver front end is strongly dependent on the design of a low noise amplifier, which is often the first active device in the receiver front end and determines the noise added to the system. To reduce the number of external filters and low noise amplifiers for multiband requirements, a system architecture formed by multiband RF filters and low-noise amplifiers is exploited. Advanced design theory and methodology are proposed in the thesis to the design of the components including bandpass filters, multi-band filters, and low-noise amplifiers. The proposed design methods and techniques proposed in this thesis include a multistage EM-based bandpass filter design and optimization method based on reflected group delay design procedure and space mapping technique, an EM-based multiband filter design and optimization method using coupling matrix decomposition technique, an EMbased multiband filter design and optimization method using multiband reflected group delay and cascade space mapping, and a multi-objective method for low-noise amplifier design. Generally, the research in this work focuses on developing and implementing novel design theory and techniques that can be exploited to simplify the system architecture and improve the design efficiency of microwave components in a modern RF receiver front end.
Summarizes cutting-edge physical layer technologies for multi-mode wireless RF transceivers. Includes original contributions from distinguished researchers and professionals. Covers cutting-edge physical layer technologies for multi-mode wireless RF transceivers. Contributors are all leading researchers and professionals in this field.
This book investigates solutions, benefits, limitations, and costs associated with multi-standard operation of RF front-ends and their ability to adapt to variable radio environments. Next, it highlights the optimization of RF front-ends to allow maximum performance within a certain power budget, while targeting full integration. Finally, the book investigates possibilities for low-voltage, low-power circuit topologies in CMOS technology.
This book investigates solutions, benefits, limitations, and costs associated with multi-standard operation of RF front-ends and their ability to adapt to variable radio environments. Next, it highlights the optimization of RF front-ends to allow maximum performance within a certain power budget, while targeting full integration. Finally, the book investigates possibilities for low-voltage, low-power circuit topologies in CMOS technology.
This book investigates and discusses the hardware design and implementation to achieve smart air interfaces with a reduced number of Radio Frequency (RF) transmitter and receiver chains, or even with a single reconfigurable RF-Frontend in the user terminal. Various hardware challenges are identified and addressed to enable the implementation of autonomous reconfigurable RF-Frontend architectures. Such challenges are (i) the conception of a transceiver with wide tuning range of at least up to 6 GHz, (ii) the system integration of reconfigurable technologies targeting current compact devices that demand voltages up to 100 V for adaptive controlling and (iii) the realization of a multiband and multistandard antenna module employing agile components to provide flexible frequency coverage. A solid design of a reconfigurable frontend is proposed from the RF part to the digital baseband. The system integration of different components in the reconfigurable RF-Frontend of a portable-oriented device architecture is demonstrated.
Wireless Receiver Architectures and Design presents the various designs and architectures of wireless receivers in the context of modern multi-mode and multi-standard devices. This one-stop reference and guide to designing low-cost low-power multi-mode, multi-standard receivers treats analog and digital signal processing simultaneously, with equal detail given to the chosen architecture and modulating waveform. It provides a complete understanding of the receiver‘s analog front end and the digital backend, and how each affects the other. The book explains the design process in great detail, starting from an analysis of requirements to the choice of architecture and finally to the design and algorithm development. The advantages and disadvantages of each wireless architecture and the suitability to a standard are given, enabling a better choice of design methodology, receiver lineup, analog block, and digital algorithm for a particular architecture. Whether you are a communications engineer working in system architecture and waveform design, an RF engineer working on noise and linearity budget and line-up analysis, a DSP engineer working on algorithm development, or an analog or digital design engineer designing circuits for wireless transceivers, this book is your one-stop reference and guide to designing low-cost low-power multi-mode multi-standard receivers. The material in this book is organized and presented to lead you from applied theory to practical design with plenty of examples and case studies drawn from modern wireless standards. Provides a complete description of receiver architectures together with their pros and cons, enabling a better choice of design methodology Covers the design trade-offs and algorithms between the analog front end and the digital modem – enabling an end-to-end design approach Addresses multi-mode multi-standard low-cost, low-power radio design – critical for producing the applications for Smart phones and portable internet devices
Essentials of RF Front-end Design and Testing Highly comprehensive text delivering the RF system essentials required to understand, develop, and evaluate the performance of RF wireless systems Essentials of RF Front-end Design and Testing: A Practical Guide for Wireless Systems is a system-oriented book which provides several wireless communication disciplines in one volume. The book covers a wide range of topics, including antenna fundamentals, phased array antenna and MIMOs that are crucial for the latest 5G mmWave and future 6G wireless systems, high-frequency transmission lines, RF building blocks that are necessary to understand how various RF subsystems are interrelated and implemented in wireless systems, and test setups for conducted and Over-The-Air (OTA) transmitter and receiver tests. The text enables readers to understand, develop, and evaluate the performance of RF wireless systems. The text focuses on RF system performance and testing rather than mathematical proofs, which are available in the provided references. Although the book is intended for testing and building RF system prototypes, it has the sufficient theoretical background needed for RF systems design and testing. Each chapter includes learning objectives, review questions, and references. Sample topics covered in the book include: An overview of cellular phone systems, 5G NR wireless technology, MIMO technology, terahertz communications for 6G wireless technology, and modulation and multiplexing Analog and digital modulation techniques, including AM, SSB, FM, FSK, PSK, QAM, SSFH, DSSS, and OFDM High-frequency transmission lines, S-parameters, low-noise amplifier, RF mixers, filters, power amplifiers, frequency synthesizers, circulators/isolators, directional couplers, RF switches, and RF phase shifters Antenna basics, including antenna gain, radiation pattern, input impedance, polarization, and antenna noise temperature; microstrip antenna, antenna array, propagation path loss, compact antenna test range (CATR), and test setups for antenna measurements. Basics of MIMO and beamforming technology, including analog, digital, and hybrid beamforming Test setups for characterizing the key RF performance parameters of 5G New Radio base station transmitters and receivers. Essentials of RF Front-end Design and Testing: A Practical Guide for Wireless Systems is a highly comprehensive resource on the subject and is intended for graduate engineers and technologists involved in designing, developing, and testing wireless systems, along with undergraduate/graduate students, enhancing their learning experience of RF subsystems/systems characterization.
Abstract: Nowadays, wireless communication devices need a compact wireless receiver, so that it can access all the available services at any time and at any location with minimum power consumption and compact area. The desire for covering all the service specifications tremendously increases the demand for multi-band/multi-standard wireless receivers. A reconfigurable receiver comes to give a hand. In this work, a universal programmable multi-band multi-standard receiver using CMOS technology is proposed. The receiver aims to target LTE specifications on the frequency range (700MHz-2.4GHz) as a case study to prove the concept of supporting multi-bands. The receiver is tested over three different frequencies 500MHz, 1GHz and 2GHz to prove its programmability. Sampling receivers and impedance translation technique are the main factors to approach the desired programmable receiver front-end. The receiver uses a quadrature band-pass charge sampling filter programmed via its controlling clocks. It forms the signal path which selects the signal, down-converts it to IF frequency and subsamples the signal decreasing the sampling frequency of the proceeding ADC. By adjusting the controlling clocks of the switches, the filter center frequency is maintained at the desired frequency. A time varying matching network based on impedance translation technique is used for multi-frequencies matching and further selectivity enhancing the receiver's linearity. The receiver front-end architecture achieves a NF of (7: 9) dB, a gain of (23: 28) dB, an out-of-band IIP3 of (-1.9 : -5.5) dBm and an in-band IIP3 of (-1.9 : -5.7) dBm across the tested frequencies. The design is tested across process corners. The layout of the design occupies 0.45mm2. The design is tested post layout to prove its reliability.
Architectures BABAK MATINPOUR and JOY LASKAR * Describes the actual implementation of receiver architectures from the initial design to an IC-based product * Presents many tricks-of-the-trade not usually covered in textbooks * Covers a range of practical issues including semiconductor technology selection, cost versus performance, yield, packaging, prototype development, testing, and analysis * Discusses architectures that are employed in modern broadband wireless systems