Download Free Multi Sensor Data Fusion And The Use Of Artificial Intelligence Book in PDF and EPUB Free Download. You can read online Multi Sensor Data Fusion And The Use Of Artificial Intelligence and write the review.

In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.
The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut
This textbook provides a comprehensive introduction to the theories and techniques of multi-sensor data fusion. It is aimed at advanced undergraduate and first-year graduate students in electrical engineering and computer science, as well as researchers and professional engineers. The book is intended to be self-contained. No previous knowledge of multi-sensor data fusion is assumed, although some familiarity with the basic tools of linear algebra, calculus and simple probability theory is recommended.
Since the publication of the first edition of this book, advances in algorithms, logic and software tools have transformed the field of data fusion. The latest edition covers these areas as well as smart agents, human computer interaction, cognitive aides to analysis and data system fusion control. data fusion system, this book guides you through the process of determining the trade-offs among competing data fusion algorithms, selecting commercial off-the-shelf (COTS) tools, and understanding when data fusion improves systems processing. Completely new chapters in this second edition explain data fusion system control, DARPA's recently developed TRIP model, and the latest applications of data fusion in data warehousing and medical equipment, as well as defence systems.
In the last few years the scientific community has realized that obtaining a better understanding of interactions between natural systems and the man-made environment across different scales demands more research efforts in remote sensing. An integrated Earth system observatory that merges surface-based, air-borne, space-borne, and even underground sensors with comprehensive and predictive capabilities indicates promise for revolutionizing the study of global water, energy, and carbon cycles as well as land use and land cover changes. The aim of this book is to present a suite of relevant concepts, tools, and methods of integrated multisensor data fusion and machine learning technologies to promote environmental sustainability. The process of machine learning for intelligent feature extraction consists of regular, deep, and fast learning algorithms. The niche for integrating data fusion and machine learning for remote sensing rests upon the creation of a new scientific architecture in remote sensing science that is designed to support numerical as well as symbolic feature extraction managed by several cognitively oriented machine learning tasks at finer scales. By grouping a suite of satellites with similar nature in platform design, data merging may come to help for cloudy pixel reconstruction over the space domain or concatenation of time series images over the time domain, or even both simultaneously. Organized in 5 parts, from Fundamental Principles of Remote Sensing; Feature Extraction for Remote Sensing; Image and Data Fusion for Remote Sensing; Integrated Data Merging, Data Reconstruction, Data Fusion, and Machine Learning; to Remote Sensing for Environmental Decision Analysis, the book will be a useful reference for graduate students, academic scholars, and working professionals who are involved in the study of Earth systems and the environment for a sustainable future. The new knowledge in this book can be applied successfully in many areas of environmental science and engineering.
Multisensor Data Fusion: From Algorithms and Architectural Design to Applications covers the contemporary theory and practice of multisensor data fusion, from fundamental concepts to cutting-edge techniques drawn from a broad array of disciplines. Featuring contributions from the world’s leading data fusion researchers and academicians, this authoritative book: Presents state-of-the-art advances in the design of multisensor data fusion algorithms, addressing issues related to the nature, location, and computational ability of the sensors Describes new materials and achievements in optimal fusion and multisensor filters Discusses the advantages and challenges associated with multisensor data fusion, from extended spatial and temporal coverage to imperfection and diversity in sensor technologies Explores the topology, communication structure, computational resources, fusion level, goals, and optimization of multisensor data fusion system architectures Showcases applications of multisensor data fusion in fields such as medicine, transportation's traffic, defense, and navigation Multisensor Data Fusion: From Algorithms and Architectural Design to Applications is a robust collection of modern multisensor data fusion methodologies. The book instills a deeper understanding of the basics of multisensor data fusion as well as a practical knowledge of the problems that can be faced during its execution.
This volume contains revised papers based on contributions to the NATO Advanced Research Workshop on Multisensor Fusion for Computer Vision, held in Grenoble, France, in June 1989. The 24 papers presented here cover a broad range of topics, including the principles and issues in multisensor fusion, information fusion for navigation, multisensor fusion for object recognition, network approaches to multisensor fusion, computer architectures for multi sensor fusion, and applications of multisensor fusion. The participants met in the beautiful surroundings of Mont Belledonne in Grenoble to discuss their current work in a setting conducive to interaction and the exchange of ideas. Each participant is a recognized leader in his or her area in the academic, governmental, or industrial research community. The workshop focused on techniques for the fusion or integration of sensor information to achieve the optimum interpretation of a scene. Several participants presented novel points of view on the integration of information. The 24 papers presented in this volume are based on those collected by the editor after the workshop, and reflect various aspects of our discussions. The papers are organized into five parts, as follows.
This textbook provides a comprehensive introduction to the concepts and idea of multisensor data fusion. It is an extensively revised second edition of the author's successful book: "Multi-Sensor Data Fusion: An Introduction" which was originally published by Springer-Verlag in 2007. The main changes in the new book are: New Material: Apart from one new chapter there are approximately 30 new sections, 50 new examples and 100 new references. At the same time, material which is out-of-date has been eliminated and the remaining text has been rewritten for added clarity. Altogether, the new book is nearly 70 pages longer than the original book. Matlab code: Where appropriate we have given details of Matlab code which may be downloaded from the worldwide web. In a few places, where such code is not readily available, we have included Matlab code in the body of the text. Layout. The layout and typography has been revised. Examples and Matlab code now appear on a gray background for easy identification and advancd material is marked with an asterisk. The book is intended to be self-contained. No previous knowledge of multi-sensor data fusion is assumed, although some familarity with the basic tools of linear algebra, calculus and simple probability is recommended. Although conceptually simple, the study of mult-sensor data fusion presents challenges that are unique within the education of the electrical engineer or computer scientist. To become competent in the field the student must become familiar with tools taken from a wide range of diverse subjects including: neural networks, signal processing, statistical estimation, tracking algorithms, computer vision and control theory. All too often, the student views multi-sensor data fusion as a miscellaneous assortment of different processes which bear no relationship to each other. In contrast, in this book the processes are unified by using a common statistical framework. As a consequence, the underlying pattern of relationships that exists between the different methodologies is made evident. The book is illustrated with many real-life examples taken from a diverse range of applications and contains an extensive list of modern references.
This book addresses the techniques for modeling and integration of data provided by different sensors within robotics and knowledge sources within machine intelligence. Leaders in robotics and machine intelligence capture state-of-the-art technology in data sensor fusion and give a unified vision of the future of the field, presented from both the theoretical and practical angles.