Download Free Multi Objective Optimization For Large Scale Highway Construction Projects Book in PDF and EPUB Free Download. You can read online Multi Objective Optimization For Large Scale Highway Construction Projects and write the review.

Tackle the most challenging problems in science and engineering with these cutting-edge algorithms Multi-objective optimization problems (MOPs) are those in which more than one objective needs to be optimized simultaneously. As a ubiquitous component of research and engineering projects, these problems are notoriously challenging. In recent years, evolutionary algorithms (EAs) have shown significant promise in their ability to solve MOPs, but challenges remain at the level of large-scale multi-objective optimization problems (LSMOPs), where the number of variables increases and the optimized solution is correspondingly harder to reach. Evolutionary Large-Scale Multi-Objective Optimization and Applications constitutes a systematic overview of EAs and their capacity to tackle LSMOPs. It offers an introduction to both the problem class and the algorithms before delving into some of the cutting-edge algorithms which have been specifically adapted to solving LSMOPs. Deeply engaged with specific applications and alert to the latest developments in the field, it’s a must-read for students and researchers facing these famously complex but crucial optimization problems. The book’s readers will also find: Analysis of multi-optimization problems in fields such as machine learning, network science, vehicle routing, and more Discussion of benchmark problems and performance indicators for LSMOPs Presentation of a new taxonomy of algorithms in the field Evolutionary Large-Scale Multi-Objective Optimization and Applications is ideal for advanced students, researchers, and scientists and engineers facing complex optimization problems.
Multi-criteria optimization problems naturally arise in practice when there is no single criterion for measuring the quality of a feasible solution. Since different criteria are contradictory, it is difficult and often impossible to find a single feasible solution that is good for all the criteria. Hence, some compromise is needed. As such, this book examines the commonly accepted compromise of the traditional Pareto-optimality approach. It also proposes one new alternative approach for generating feasible solutions to multi-criteria optimization problems. Finally, the book presents two chapters on the existing solution methods for two real-life, multi-criteria optimization problems.
This report will be of interest to state and local highway agency construction managers and contractors with regard to learning about best practices of time-related incentive and disincentive contract provisions and their effect on staffing levels, productivity, project cost, quality, contract administration, and the contractor's operations and innovations. The report also presents a decision process guide to use as a template for crafting the incentive/disincentive provisions.
This book is a guide for students, researchers, and practitioners to the latest developments in fuzzy hybrid computing in construction engineering and management. It discusses basic theory related to fuzzy logic and fuzzy hybrid computing, their application in a range of practical construction problems, and emerging and future research trends.
This book provides a broad overview of project and project management principles, processes, and success/failure factors. It also provides a state of the art of applications of the project management concepts, especially in the field of construction projects, based on the Project Management Body of Knowledge (PMBOK). The slate of geographically and professionally diverse authors illustrates project management as a multidisciplinary undertaking that integrates renewable and non-renewable resources in a systematic process to achieve project goals. The book describes assessment based on technical and operational goals and meeting schedules and budgets.
The difficulties that are met in construction projects include budget issues, contractual time constraints, complying with sustainability rating systems, meeting local building codes, and achieving the desired quality level, to name but a few. Construction researchers have proposed and construction practitioners have used optimization strategies to meet various objectives over the years. They started out by optimizing one objective at a time (e.g., minimizing construction cost) while disregarding others. Because the objectives of construction projects often conflict with each other, single-objective optimization does not offer practical solutions as optimizing one objective would often adversely affect the other objectives that are not being optimized. They then experimented with multi-objective optimization. The many multi-objective optimization approaches that they used have their own advantages and drawbacks when used in some scenarios with different sets of objectives. In this chapter, a review is presented of 16 multi-objective optimization approaches used in 55 research studies performed in the construction industry and that were published in the period 2012,Äì2016. The discussion highlights the strengths and weaknesses of these approaches when used in different scenarios.
This book comprises select peer-reviewed proceedings of the International Conference on Recent Developments in Sustainable Infrastructure (ICRDSI) 2019. The topics span over all major disciplines of civil engineering with regard to sustainable development of infrastructure and innovation in construction materials, especially concrete. The book covers numerical and analytical studies on various topics such as composite and sandwiched structures, green building, groundwater modeling, rainwater harvesting, soil dynamics, seismic resistance and control of structures, waste management, structural health monitoring, and geo-environmental engineering. This book will be useful for students, researchers and professionals working in sustainable technologies in civil engineering.