Download Free Multi Axle Vehicle Modeling And Stability Control Book in PDF and EPUB Free Download. You can read online Multi Axle Vehicle Modeling And Stability Control and write the review.

Multi-axle vehicles, such as trucks and buses, have been playing a vital role in trucking industry, public transportation system, and long-distance transport services. However, at the same time, statistics suggest more than one million lives are lost in road accidents each year over the world. The high adoption and utilization of multi-axle vehicles hold a significant portion of road accidents and death. To improve the active safety of vehicles, active systems have been developed and commercialized over the last decades to augment the driver's actions. However, unlike two-axle vehicles (e.g., passenger cars), multi-axle vehicles come in a rich diversity and variety to meet with many different transportation needs. Specifically, vehicle configurations are seen in different numbers of axles, numbers of articulations, powertrain modes, and active actuation systems. In addition, multi-axle vehicles are usually articulated, which makes the dynamics and control more complex and challenging as more instability modes appear, such as, trailer sway and jackknife. This research is hence motivated by an essential question: how can a universal and reconfigurable control system be developed for any multi-axle/articulated vehicle with any configuration? Leveraging the matrix approach and optimization-based techniques, this thesis developed a reconfigurable and universal modeling and control framework to this aim. Specifically, a general dynamics modeling that unifies any multi-axle and articulated vehicles in one formulation is developed in an intuitive manner. It defines the `Boolean Matrices' to determine any configuration of the articulation, the number of axles, and the active actuation systems. In this way, the corresponding dynamics model can be easily and quickly formulated when axles, articulations or actuators are added or removed. The general modeling serves to achieve the universality and reconfigurability in controller design. Therefore, a hierarchical, i.e., two-layer, control system is proposed. In the high layer, the optimization process of a model predictive control (MPC) calculates corrective Center of Gravity (CG) forces/moments, which are universal to any vehicle. The lower-level controller is achieved by a Control Allocation (CA) algorithm. It aims to realize the MPC commands by regulating the steering or torque (driving or braking) at each wheel optimally. In addition, the optimization takes into account real-time constraints, such as actuator limits, tire capacity, wheel slips, and actuators failure. Simulations are conducted on different vehicle configurations to evaluate control performance, reconfigurability, and robustness of the system. Additionally, to evaluate the real-time performance of the developed controller, experimental validation is carried out on an articulated vehicle with multiple configurations of differential braking systems. It is observed that the controller is very effective in dynamics control and has a promising reconfigurability when moving from one configuration to another.
Anyone who has experience with a car, bicycle, motorcycle, or train knows that the dynamic behavior of different types of vehicles and even different vehicles of the same class varies significantly. For example, stability (or instability) is one of the most intriguing and mysterious aspects of vehicle dynamics. Why do some motorcycles sometimes exhibit a wobble of the front wheel when ridden "no hands" or a dangerous weaving motion at high speed? Why does a trailer suddenly begin to oscillate over several traffic lanes just because its load distribution is different from the usual? Other questions also arise: How do humans control an inherently unstable vehicle such as a bicycle and how could a vehicle be designed or modified with an automatic control system to improve its dynamic properties? Using mainly linear vehicle dynamic models as well as discussion of nonlinear limiting effects, Vehicle Dynamics, Stability, and Control, Second Edition answers these questions and more. It illustrates the application of techniques from kinematics, rigid body dynamics, system dynamics, automatic control, stability theory, and aerodynamics to the study of the dynamic behavior of a number of vehicle types. In addition, it presents specialized topics dealing specifically with vehicle dynamics such as the force generation by pneumatic tires, railway wheels, and wings. The idea that vehicles can exhibit dangerous behavior for no obvious reason is in itself fascinating. Particularly obvious in racing situations or in speed record attempts, dynamic problems are also ubiquitous in everyday life and are often the cause of serious accidents. Using relatively simple mathematical models, the book offers a satisfying introduction to the dynamics, stability, and control of vehicles.
Another focus of the current research was to develop a new 28-foot flatbed control trailer model. Meeting this objective was comprised of determining the physical parameters, performing static and dynamic validation, and adapting the current ESC model to a trailer with only a single axle. RSM simulations were performed, and again showed the ESC-initiated braking to be a significant improvement toward increasing vehicle roll stability.
It has been acknowledged that the applications of Articulated Steer vehicles (ASVs) result in some problems, such as rollover, jackknifing and snaking. In this book, for a typical ASV, a comprehensive study of the causes of the snaking, and of the effects of the vehicle parameters and operating conditions on the stability is presented. Furthermore, to stabilize the vehicle during its most critical driving conditions, some studies are directed towards designing different types of active stability control systems. The subject of this book fits well into the scope of Vehicle Dynamics and Control. The main interest of this work is in the development of elegant design procedures where advanced control theory results are combined with established vehicle dynamic modeling techniques, to come up with appropriate vehicle stability controllers. The contents of this book can be used as a guide to solving the development problems of all kinds of road vehicles in the areas of stability and control. More specifically, this book can significantly assist professionals of various industries and academia in the field of articulated vehicle design, in finding proper solutions to the stability problems.
Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicles. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability control has been enhanced. The use of feedback control systems on automobiles is growing rapidly. This book is intended to serve as a useful resource to researchers who work on the development of such control systems, both in the automotive industry and at universities. The book can also serve as a textbook for a graduate level course on Vehicle Dynamics and Control.
Comprehensively covers the fundamentals of vehicle dynamics with application to automotive mechatronics Presents a number of different design, analysis and implementation considerations related to automobiles, including power requirements, converters, performance, fuel consumption and vehicle dynamic models Covers the dynamics, modeling and control of not only the entire vehicle system, but also of key elements of the vehicle such as transmissions, and hybrid systems integration Includes exercise problems and MATLAB® codes Accompanied by a website hosting animations
This reference offers a systematic approach to the dynamics and stability of vehicles such as cars, bicycles, trailers, motorcycles, and trains and shows how mathematical models of varying degrees of complexity can be used to suggest design guidelines for assurance of vehicle stability. Based on more than 30 years of teaching experience from a reno
Author Daniel E. Williams, an industry professional with more 30 years of experience in chassis control systems from concept to launch, brings this experience and his unique approach to readers of Generalized Vehicle Dynamics. This book makes use of nomenclature and conventions not used in other texts. This combination allows the derivation of complex vehicles that roll with multiple axles, any of which can be steered, to be directly predicted by manipulation of a generalized model. Similarly the ride characteristics of such a generalized vehicle are derived. This means the vehicle dynamic behavior of these vehicles can be directly written from the results derived in this work, and there is no need to start from Newton's Second Law to create such insight. Using new and non-standard conventions allows wider applicability to complex vehicles, including autonomous vehicles. Generalized Vehicle Dynamics is divided into two main sections-ride and handling-with roll considered in both. Each section concludes with a case study that applies the concepts presented in the preceding chapters to actual vehicles. Chapters include Simple Suspension as a Linear Dynamic System, The Quarter-Car Model, The Pitch Plane Model, The Roll Plane Mode, Active Suspension to Optimize Ride, Handling Basics, Reference Frames, New Conventions, Two-Axle Yaw Plane Model, Rear Axle Steering and Lanekeeping, Two-Axle Vehicles that Roll, Three-Axle Vehicle Dynamics, Generalized Multi-Axle Vehicle Dynamics and Automated Vehicle Architecture from Vehicle Dynamics. "A fresh and more inclusive book that lays out much new material in vehicle dynamics." - L. Daniel Metz, Ph.D.
"In the past decade, electronic stability controls (ESC) have become increasingly common on vehicles operating in the United States. The acceptance of this technology has progressed to the point where all new passenger vehicles sold in the US are required to have an ESC system. With this successful adoption of ESC technology by the passenger car market, there is increasing interest by both the industry and government in having ESC systems developed for and implemented in the heavy truck market. As the typical commercial vehicle is much heavier and has a higher center of gravity compared to a passenger car, the migration of ESC from passenger cars to heavy trucks will require a re-assessment of the demands placed on the ESC system and the corresponding reactions of the ESC system. The research presented here has been conducted to help identify and document the needed performance capabilities of an ESC system for a class 8 tractor and semi-trailer. The procedure used for assessing the performance of a tractor and semi-trailer with a yaw control ESC system was to adapt a typical passenger car yaw stability system to a class 8 commercial tractor and trailer vehicle. Several configurations of the ESC system were assessed using two different maneuvers. It is intended that the research presented here be used as the starting point for the development of a comprehensive yaw and roll ESC system for a class 8 tractor and semi-trailer"--Technical report documentation p.