Download Free Moscow Seminar On Mathematical Physics Ii Book in PDF and EPUB Free Download. You can read online Moscow Seminar On Mathematical Physics Ii and write the review.

The Institute for Theoretical and Experimental Physics (ITEP) is internationally recognized for achievements in various branches of theoretical physics. For many years, the seminars at ITEP have been among the main centers of scientific life in Moscow. This volume is a collection of articles by participants of the seminar on mathematical physics that has been held at ITEP since 1983. This is the second such collection; the first was published in the same series, AMS Translations, Series 2, vol. 191. The papers in the volume are devoted to several mathematical topics that strongly influenced modern theoretical physics. Among these topics are cohomology and representations of infinite Lie algebras and superalgebras, Hitchin and Knizhnik-Zamolodchikov-Bernard systems, and the theory of $D$-modules. The book is intended for graduate students and research mathematicians working in algebraic geometry, representation theory, and mathematical physics.
This volume contains a selection of papers based on presentations given in 2006-2007 at the S. P. Novikov Seminar at the Steklov Mathematical Institute in Moscow. Novikov's diverse interests are reflected in the topics presented in the book. The articles address topics in geometry, topology, and mathematical physics. The volume is suitable for graduate students and researchers interested in the corresponding areas of mathematics and physics.
Articles in this collection are devoted to modern problems of topology, geometry, mathematical physics, and integrable systems, and they are based on talks given at the famous Novikov's seminar at the Steklov Institute of Mathematics in Moscow in 2012-2014. The articles cover many aspects of seemingly unrelated areas of modern mathematics and mathematical physics; they reflect the main scientific interests of the organizer of the seminar, Sergey Petrovich Novikov. The volume is suitable for graduate students and researchers interested in the corresponding areas of mathematics and physics.
Translations of articles on mathematics appearing in various Russian mathematical serials.
Presents applications of Poisson geometry to some fundamental well-known problems in mathematical physics. This volume is suitable for graduate students and researchers interested in mathematical physics. It uses methods such as: unexpected algebras with non-Lie commutation relations, dynamical systems theory, and semiclassical asymptotics.
The articles in this collection present new results in partial differential equations, numerical analysis, probability theory, and geometry. The results, ideas, and methods given in the book will be of interest to a broad range of specialists.
This volume is a collection of papers on model theory and its applications. The longest paper, "Model Theory of Unitriangular Groups" by O. V. Belegradek, forms a subtle general theory behind Mal'tsev's famous correspondence between rings and groups. This is the first published paper on the topic. Given the present model-theoretic interest in algebraic groups, Belegradek's work is of particular interest to logicians and algebraists. The rest of the collection consists of papers on various questions of model theory, mainly on stability theory. Contributors are leading Russian researchers in the field.
The collection consists of four papers in different areas of mathematical physics united by the intrinsic coherence of the asymptotic methods used. The papers describe both the known results and most recent achievements, as well as new concepts and ideas in mathematical analysis of quantum and wave problems. In the introductory paper ``Quantization and Intrinsic Dynamics'' a relationship between quantization of symplectic manifolds and nonlinear wave equations is described and discussed from the viewpoint of the weak asymptotics method (asymptotics in distributions) and the semiclassical approximation method. It also explains a hidden dynamic geometry that arises when using these methods. Three other papers discuss applications of asymptotic methods to the construction of wave-type solutions of nonlinear PDE's, to the theory of semiclassical approximation (in particular, the Whitham method) for nonlinear second-order ordinary differential equations, and to the study of the Schrodinger type equations whose potential wells are sufficiently shallow that the discrete spectrum contains precisely one point. All the papers contain detailed references and are oriented not only to specialists in asymptotic methods, but also to a wider audience of researchers and graduate students working in partial differential equations and mathematical physics.