Download Free Mortality Risk Modeling Book in PDF and EPUB Free Download. You can read online Mortality Risk Modeling and write the review.

The field of financial mathematics has developed tremendously over the past thirty years, and the underlying models that have taken shape in interest rate markets and bond markets, being much richer in structure than equity-derivative models, are particularly fascinating and complex. This book introduces the tools required for the arbitrage-free modelling of the dynamics of these markets. Andrew Cairns addresses not only seminal works but also modern developments. Refreshingly broad in scope, covering numerical methods, credit risk, and descriptive models, and with an approachable sequence of opening chapters, Interest Rate Models will make readers--be they graduate students, academics, or practitioners--confident enough to develop their own interest rate models or to price nonstandard derivatives using existing models. The mathematical chapters begin with the simple binomial model that introduces many core ideas. But the main chapters work their way systematically through all of the main developments in continuous-time interest rate modelling. The book describes fully the broad range of approaches to interest rate modelling: short-rate models, no-arbitrage models, the Heath-Jarrow-Morton framework, multifactor models, forward measures, positive-interest models, and market models. Later chapters cover some related topics, including numerical methods, credit risk, and model calibration. Significantly, the book develops the martingale approach to bond pricing in detail, concentrating on risk-neutral pricing, before later exploring recent advances in interest rate modelling where different pricing measures are important.
Modern mortality modelling for actuaries and actuarial students, with example R code, to unlock the potential of individual data.
This open access book collects expert contributions on actuarial modelling and related topics, from machine learning to legal aspects, and reflects on possible insurance designs during an epidemic/pandemic. Starting by considering the impulse given by COVID-19 to the insurance industry and to actuarial research, the text covers compartment models, mortality changes during a pandemic, risk-sharing in the presence of low probability events, group testing, compositional data analysis for detecting data inconsistencies, behaviouristic aspects in fighting a pandemic, and insurers' legal problems, amongst others. Concluding with an essay by a practicing actuary on the applicability of the methods proposed, this interdisciplinary book is aimed at actuaries as well as readers with a background in mathematics, economics, statistics, finance, epidemiology, or sociology.
This book is the seventh in a series of titles from the National Research Council that addresses the effects of exposure to low dose LET (Linear Energy Transfer) ionizing radiation and human health. Updating information previously presented in the 1990 publication, Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR V, this book draws upon new data in both epidemiologic and experimental research. Ionizing radiation arises from both natural and man-made sources and at very high doses can produce damaging effects in human tissue that can be evident within days after exposure. However, it is the low-dose exposures that are the focus of this book. So-called “late” effects, such as cancer, are produced many years after the initial exposure. This book is among the first of its kind to include detailed risk estimates for cancer incidence in addition to cancer mortality. BEIR VII offers a full review of the available biological, biophysical, and epidemiological literature since the last BEIR report on the subject and develops the most up-to-date and comprehensive risk estimates for cancer and other health effects from exposure to low-level ionizing radiation.
This book is ideal for practicing experts in particular actuaries in the field of property-casualty insurance, life insurance, reinsurance and insurance supervision, as well as teachers and students. It provides an exploration of Credibility Theory, covering most aspects of this topic from the simplest case to the most detailed dynamic model. The book closely examines the tasks an actuary encounters daily: estimation of loss ratios, claim frequencies and claim sizes.
This book presents the latest theories and methods of reliability and quality, with emphasis on reliability and quality in design and modelling. Each chapter is written by active researchers and professionals with international reputations, providing material which bridges the gap between theory and practice to trigger new practices and research challenges. The book therefore provides a state-of-the-art survey of reliability and quality in design and practices.
Actuarial Principles: Lifetables and Mortality Models explores the core of actuarial science: the study of mortality and other risks and applications. Including the CT4 and CT5 UK courses, but applicable to a global audience, this work lightly covers the mathematical and theoretical background of the subject to focus on real life practice. It offers a brief history of the field, why actuarial notation has become universal, and how theory can be applied to many situations. Uniquely covering both life contingency risks and survival models, the text provides numerous exercises (and their solutions), along with complete self-contained real-world assignments. - Provides detailed coverage of life contingency risks and survival models - Presents self-contained chapters with coverage of key topics from both practitioner and theoretical viewpoints - Includes numerous real world exercises that are accompanied by enlightening solutions - Covers useful background information on how and why the subject has evolved and developed
This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.
In light of recent evidence on the relationship of ozone to mortality and questions about its implications for benefit analysis, the Environmental Protection Agency asked the National Research Council to establish a committee of experts to evaluate independently the contributions of recent epidemiologic studies to understanding the size of the ozone-mortality effect in the context of benefit analysis. The committee was also asked to assess methods for estimating how much a reduction in short-term exposure to ozone would reduce premature deaths, to assess methods for estimating associated increases in life expectancy, and to assess methods for estimating the monetary value of the reduced risk of premature death and increased life expectancy in the context of health-benefits analysis. Estimating Mortality Risk Reduction and Economic Benefits from Controlling Ozone Air Pollution details the committee's findings and posits several recommendations to address these issues.