Download Free Morphogenesis And Maturation Of Retroviruses Book in PDF and EPUB Free Download. You can read online Morphogenesis And Maturation Of Retroviruses and write the review.

Retroviruses arguably belong to the most fascinating of all viruses because of their unusual and highly efficient mode of replication involving reverse transcription and integration of the viral genome and a complex system of transcriptional and post transcriptional regulatory mechanisms. The importance of ret roviruses as human and animal pathogens has also enhanced scientific and medical interest in this diverse group of viruses and has spurred an intensive search for novel and improved antiviral agents. More recently, analysis of retroviral replication and in particular understanding the formation and composition of the virus particle has received additional attention because of the promise of retroviral vectors as vehicles for human somatic gene therapy. Many recent advances have been made in our understanding of the molecular mechanisms governing as sembly and release of infectious retrovirus particles. This book attempts to summarize these recent developments and to provide an overview of our current knowledge on retrovirus particle formation. The individual chapters of the book deal with specific steps in the pathway of retroviral morphogenesis and maturation, starting at the time when the components of the virus have been synthesized within the infected cell and ending once the infectious virion has been released from the cell. An introductory chapter provides a comparative description of the structure and morphology of various retroviruses.
Methods included in this volume apply to the expression and characterization of retroviral proteases and their inhibitor/substrate design.
This book comprehensively covers the mechanisms of action and inhibitor design for HIV-1 integrase. It serves as a resource for scientists facing challenging drug design issues and researchers in antiviral drug discovery. Despite numerous review articles and isolated book chapters dealing with HIV-1 integrase, there has not been a single source for those working to devise anti-AIDS drugs against this promising target. But this book fills that gap and offers a valuable introduction to the field for the interdisciplinary scientists who will need to work together to design drugs that target HIV-1 integrase.
This book contemplates the structure, dynamics and physics of virus particles: From the moment they come into existence by self-assembly from viral components produced in the infected cell, through their extracellular stage, until they recognise and infect a new host cell and cease to exist by losing their physical integrity to start a new infectious cycle. (Bio)physical techniques used to study the structure of virus particles and components, and some applications of structure-based studies of viruses are also contemplated. This book is aimed first at M.Sc. students, Ph.D. students and postdoctoral researchers with a university degree in biology, chemistry, physics or related scientific disciplines who share an interest or are actually working on viruses. We have aimed also at providing an updated account of many important concepts, techniques, studies and applications in structural and physical virology for established scientists working on viruses, irrespective of their physical, chemical or biological background and their field of expertise. We have not attempted to provide a collection of for-experts-only reviews focused mainly on the latest research in specific topics; we have not generally assumed that the reader knows all of the jargon and all but the most recent and advanced results in each topic dealt with in this book. In short, we have attempted to write a book basic enough to be useful to M.Sc and Ph.D. students, as well as advanced and current enough to be useful to senior scientists with an interest in Structural and/or Physical Virology.
This comprehensive account of the human herpesviruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein–Barr virus, Kaposi's Sarcoma-associated herpesvirus, cytomegalovirus, HHV6A, 6B and 7, and varicella-zoster virus. The viral diseases and cancers they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology of infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth, both scientifically and in terms of clinical guidelines for patient care. The text is illustrated generously throughout and is fully referenced to the latest research and developments.
Leading scientists in the field review the genomics, molecular biology and pathogenesis of these important viruses, comprehensively covering all the recent advances.
This book explores a new challenge in virology: to understand how physical properties of virus particles (virions) and viruses (infected cells) affect the course of an infection. Insights from the emerging field of physical virology will contribute to understanding of the physical nature of viruses and cells, and will open new ways for anti-viral interference. Nine chapters and an editorial written by physicists, chemists, biologists and computational experts describe how virions serve as trail blazers in uncharted territory of cells. The authors outline how particles change in composition as they interact with host cells. Such virus dynamics are crucial for virus entry into cells and infection. It influences the modern concepts of virus-host interactions, viral lineages and evolution. The volume gives numerous up-to-date examples of modern virology and provides a fascinating read for researchers, clinicians and students in the field of infectious diseases.
For the first time a compilation of chapters that depict the biological bases underlying the development of lentiviral vectors, the techniques involved in the manufacture of this new gene delivery tool, and its most promising applications.