Download Free Moonshine Of Finite Groups Book in PDF and EPUB Free Download. You can read online Moonshine Of Finite Groups and write the review.

This is an almost verbatim reproduction of the author's lecture notes written in 1983-84 at the Ohio State University, Columbus, Ohio, USA. A substantial update is given in the bibliography. Over the last 20 plus years, there has been an energetic activity in the field of finite simple group theory related to the monster simple group. Most notably, influential works have been produced in the theory of vertex operator algebras whose research was stimulated by the moonshine of the finite groups. Still, we can ask the same questions now just as we did some 30-40 years ago: What is the monster simple group? Is it really related to the theory of the universe as it was vaguely so envisioned? What lays behind the moonshine phenomena of the monster group? It may appear that we have only scratched the surface. These notes are primarily reproduced for the benefit of young readers who wish to start learning about modular functions used in moonshine.
James Lepowsky t The search for symmetry in nature has for a long time provided representation theory with perhaps its chief motivation. According to the standard approach of Lie theory, one looks for infinitesimal symmetry -- Lie algebras of operators or concrete realizations of abstract Lie algebras. A central theme in this volume is the construction of affine Lie algebras using formal differential operators called vertex operators, which originally appeared in the dual-string theory. Since the precise description of vertex operators, in both mathematical and physical settings, requires a fair amount of notation, we do not attempt it in this introduction. Instead we refer the reader to the papers of Mandelstam, Goddard-Olive, Lepowsky-Wilson and Frenkel-Lepowsky-Meurman. We have tried to maintain consistency of terminology and to some extent notation in the articles herein. To help the reader we shall review some of the terminology. We also thought it might be useful to supplement an earlier fairly detailed exposition of ours [37] with a brief historical account of vertex operators in mathematics and their connection with affine algebras. Since we were involved in the development of the subject, the reader should be advised that what follows reflects our own understanding. For another view, see [29].1 t Partially supported by the National Science Foundation through the Mathematical Sciences Research Institute and NSF Grant MCS 83-01664. 1 We would like to thank Igor Frenkel for his valuable comments on the first draft of this introduction.
In an exciting, fast-paced historical narrative ranging across two centuries, Ronan takes readers on an exhilarating tour of this final mathematical quest to understand symmetry.
This is a volume of research articles related to finite groups. Topics covered include the classification of finite simple groups, the theory of p-groups, cohomology of groups, representation theory and the theory of buildings and geometries. As well as more than twenty original papers on the latest developments, which will be of great interest to specialists, the volume contains several expository articles, from which students and non-experts can learn about the present state of knowledge and promising directions for further research. The Finite Groups 2003 conference was held in honor of John Thompson. The profound influence of his fundamental contributions is clearly visible in this collection of papers dedicated to him.
This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."
This is the proceedings of a Joint Summer Research Conference held at Mount Holyoke College in Jun 1994. As perhaps the first conference proceedings devoted exclusively to the subject known as "Moonshine", this work contains something for many mathematicians and physicists. Many of the results featured are not available elsewhere.
The papers in these proceedings of the 1986 Arcata Summer Institute bear witness to the extraordinarily vital and intense research in the representation theory of finite groups. The confluence of diverse mathematical disciplines has brought forth work of great scope and depth. Particularly striking is the influence of algebraic geometry and cohomology theory in the modular representation theory and the character theory of reductive groups over finite fields, and in the general modular representation theory of finite groups. The continuing developments in block theory and the general character theory of finite groups is noteworthy. The expository and research aspects of the Summer Institute are well represented by these papers.
Quilts are 2-complexes used to analyze actions and subgroups of the 3-string braid group and similar groups. This monograph establishes the fundamentals of quilts and discusses connections with central extensions, braid actions, and finite groups. Most results have not previously appeared in a widely available form, and many results appear in print for the first time. This monograph is accessible to graduate students, as a substantial amount of background material is included. The methods and results may be relevant to researchers interested in infinite groups, moonshine, central extensions, triangle groups, dessins d'enfants, and monodromy actions of braid groups.