Download Free Monte Carlo Simulation Of Mixture Phase Behavior Book in PDF and EPUB Free Download. You can read online Monte Carlo Simulation Of Mixture Phase Behavior and write the review.

The high pressure phase behaviour of binary fluid mixtures has been extensively studied during the last three decades. There is ample experimental data for a wide variety of binary mixtures and extensive methods for prediction have been developed. In contrast, the investigation of ternary and other multicomponent fluids is in its infancy. Experimental ternary mixture critical data are very rare and theoretical studies have been limited to data correlation rather than genuine prediction. The phase behaviour of ternary and other multicomponent fluid mixtures has many novel aspects which are not manifested in binary mixtures. The properties of ternary mixtures are also likely to be more difficult to characterize experimentally. It is in this context that calculated phase diagrams have an important role in leading the discovery of new phenomena and guiding experimental work. The criteria for phase equilibria of multicomponent fluids with particular emphasis on the critical state are examined in this book, and models for predicting fluid equilibria (e.g., different equations of state) are compared. Particular attention is paid to the critical state of ternary mixtures which has hitherto been largely neglected. The problems associated with predicting ternary equilibria are discussed, and some novel aspects of ternary critical phenomena are illustrated. The books also describes a novel type of critical transition which appears to be a common feature of the equilibria of ternary mixtures. Extensive phase diagrams of a wide range of ternary mixtures including systems containing carbon dioxide, water, nitrogen and tetrafluoromethane as one or more component are presented. The theoretical treatment is detailed in the appendix and a computation of known experimental critical points is also included.
Phase Behavior provides the reader with the tools needed to solve problems requiring a description of phase behavior and specific pressure/volume/temperature (PVT) properties.
Molecular simulation allows researchers unique insight into the structures and interactions at play in fluids. Since publication of the first edition of Molecular Simulation of Fluids, novel developments in theory, algorithms and computer hardware have generated enormous growth in simulation capabilities. This 2nd edition has been fully updated and expanded to highlight this recent progress, encompassing both Monte Carlo and molecular dynamic techniques, and providing details of theory, algorithms and both serial and parallel implementations. Beginning with a clear introduction and review of theoretical foundations, the book goes on to explore intermolecular potentials before discussing the calculation of molecular interactions in more detail. Monte Carlo simulation and integrators for molecular dynamics are then discussed further, followed by non-equilibrium molecular dynamics and molecular simulation of ensembles and phase equilibria. The use of object-orientation is examined in detail, with working examples coded in C++. Finally, practical parallel simulation algorithms are discussed using both MPI and GPUs, with the latter coded in CUDA. Drawing on the extensive experience of its expert author, Molecular Simulation of Fluids: Theory, Algorithms, Object-Orientation, and Parallel Computing 2nd Edition is a practical, accessible guide to this complex topic for all those currently using, or interested in using, molecular simulation to study fluids. - Fully updated and revised to reflect advances in the field, including new chapters on intermolecular potentials and parallel algorithms - Covers the application of both MPI and GPU programming to molecular simulation - Covers a wide range of simulation topics using both Monte Carlo and molecular dynamics approaches - Provides access to downloadable simulation code, including GPU code using CUDA, to encourage practice and support learning
Channels of nanotubular dimensions exist in a variety of materials (examples are carbon nanotubes and the nanotubular channels of zeolites and zeotypes) and show promise for numerous applications due to their unique properties. One of their most important properties is their capacity to adsorb molecules and these may exist in a variety of phases. "Adsorption and Phase Behaviour in Nanochannels and Nanotubes" provides an excellent review of recent and current work on adsorption on nanometerials. It is an impressive collection of papers dealing with the adsorption and phase behaviour in nanoporous materials from both experimental and theoretical perspectives. "Adsorption and Phase Behaviour in Nanochannels and Nanotubes" focuses on carbon nanotubes as well as zeolites and related materials.
Confined Fluid Phase Behavior and CO2 Sequestration in Shale Reservoirs delivers the calculation components to understand pore structure and absorption capacity involving unconventional reservoirs. Packed with experimental procedures, step-by-step instructions, and published data, the reference explains measurements for capillary pressure models, absorption behavior in double nano-pore systems, and the modeling of interfacial tension in C02/CH4/brine systems. Rounding out with conclusions and additional literature, this reference gives petroleum engineers and researchers the knowledge to maximize productivity in shale reservoirs. - Helps readers gain advanced understanding of methods of adsorption behavior in shale gas - Presents theories and calculations for measuring and computing by providing step-by-step instructions, including flash calculation for phase equilibrium - Includes advances in shale fluid behavior, along with well-structured experiments and flow charts
DNA Nanoscience: From Prebiotic Origins to Emerging Nanotechnology melds two tales of DNA. One is a look at the first 35 years of DNA nanotechnology to better appreciate what lies ahead in this emerging field. The other story looks back 4 billion years to the possible origins of DNA which are shrouded in mystery. The book is divided into three parts comprised of 15 chapters and two Brief Interludes. Part I includes subjects underpinning the book such as a primer on DNA, the broader discipline of nanoscience, and experimental tools used by the principals in the narrative. Part II examines the field of structural DNA nanotechnology, founded by biochemist/crystallographer Nadrian Seeman, that uses DNA as a construction material for nanoscale structures and devices, rather than as a genetic material. Part III looks at the work of physicists Noel Clark and Tommaso Bellini who found that short DNA (nanoDNA) forms liquid crystals that act as a structural gatekeeper, orchestrating a series of self-assembly processes using nanoDNA. This led to an explanation of the polymeric structure of DNA and of how life may have emerged from the prebiotic clutter.
Solubility is fundamental to most areas of chemistry and is one of the most basic of thermodynamic properties. It underlies most industrial processes. Bringing together the latest developments and ideas, Developments and Applications in Solubility covers many varied and disparate topics. The book is a collection of work from leading experts in their fields and covers the theory of solubility, modelling and simulation, industrial applications and new data and recent developments relating to solubility. Of particular interest are sections on: experimental, calculated and predicted solubilities; solubility phenomena in 'green' quaternary mixtures involving ionic liquids; molecular simulation approaches to solubility; solubility impurities in cryogenic liquids and carbon dioxide in chemical processes. The book is a definitive and comprehensive reference to what is new in solubility and is ideal for researcher scientists, industrialists and academics