Download Free Monotone Iterative Techniques For Discontinuous Nonlinear Differential Equations Book in PDF and EPUB Free Download. You can read online Monotone Iterative Techniques For Discontinuous Nonlinear Differential Equations and write the review.

""Providing the theoretical framework to model phenomena with discontinuous changes, this unique reference presents a generalized monotone iterative method in terms of upper and lower solutions appropriate for the study of discontinuous nonlinear differential equations and applies this method to derive suitable fixed point theorems in ordered abstract spaces.
Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.
This text introduces a classification of equations and systems not solved with respect to the higher-order derivative, and studies boundary-value problems for these classes of equations. It includes mathematical results from S.L. Sobolev's study on the small oscillations of a rotating fluid.
This reference provides a lucid introduction to the principles and applications of Knaster-Kuratowski-Mazurkiewicz (KKM) theory and explores related topics in nonlinear set-valued analysis.
"Provides a clear and comprehensive overview of the fundamental theories, numerical methods, and iterative processes encountered in difference calculus. Explores classical problems such as orthological polynomials, the Euclidean algorithm, roots of polynomials, and well-conditioning."
Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.
Examines developments in the oscillatory and nonoscillatory properties of solutions for functional differential equations, presenting basic oscillation theory as well as recent results. The book shows how to extend the techniques for boundary value problems of ordinary differential equations to those of functional differential equations.
This work presents a detailed study of linear abstract degenerate differential equations, using both the semigroups generated by multivalued (linear) operators and extensions of the operational method from Da Prato and Grisvard. The authors describe the recent and original results on PDEs and algebraic-differential equations, and establishes the analyzability of the semigroup generated by some degenerate parabolic operators in spaces of continuous functions.
"Examining a topic that has been the subject of more than 300 articles since it was first conceived nearly 20 years ago, this monograph describes for the first time in one volume the basic theory and multitude of applications in the study of differential subordinations."