Download Free Monitoring And Modeling Of Global Changes A Geomatics Perspective Book in PDF and EPUB Free Download. You can read online Monitoring And Modeling Of Global Changes A Geomatics Perspective and write the review.

The chapters in this book present state-of-the-art geomatics technologies applied in global environmental studies. This text provides the latest research findings and delivers complete references to related publications. This book will motivate the undergraduate and graduate students, researchers and practitioners to better understand the environmental changes with informed solutions. Global Change studies are increasingly considered a vital source of information to understand the Earth Environment, especially in the framework of human-induced, climate change and land use transformation. Satellite Earth Observing systems and geomatics technologies provide a unique tool to monitor and model the changes, respectively. While the range of applications and innovative techniques are always increasing, this book provides a summary of key study cases where satellite data offers critical information to understand the usefulness of the geomatics technologies and global environmental issues. Geomatics technologies provide powerful tools to model and analyze the effects of those global environmental changes towards minimizing their adverse impacts on human health and the environment.
This book provides a detailed overview of the concepts, techniques, applications, and methodological approaches involved in land use and cover change (LUCC) modeling, also known simply as land change modeling. More than 40 international experts in this field have participated in this book, which illustrates recent advances in LUCC modeling with examples from North and South America, the Middle East, and Europe. Given the broad range of geomatic approaches available, it helps readers select the approach that best meets their needs. The book is structured into five parts preceded by a foreword written by Roger White and a general introduction. Part I consists of four chapters, each of which focuses on a specific stage in the modeling process: calibration, simulation, validation, and scenarios. It presents and explains the fundamental ideas and concepts underlying LUCC modeling. This is complemented by a comparative analysis of the selected software packages, practically applied in various case studies in Part II and Part III. Part II discusses recently proposed methodological developments that have enhanced modeling procedures and results while Part III offers case studies as well as interesting, innovative methodological proposals. Part IV revises different fundamental techniques used in LUCC modeling and finally Part V describes the best-known software packages used in the applications presented in Parts II and III.
Shelving Guide: This book will present new research regarding the interdisciplinary applications of spatial information sciences for identification, assessment, monitoring, and modeling issues related to natural resources and environmental management. It will focus on the creation, collection, storage, processing, modeling, interpretation, display and dissemination of spatio-temporal data, which could greatly aid with environmental management issues including ecosystem change, resource utilization, land use management, and environmental pollution. The positive environmental impacts of information technology advancements with regard to global environmental and climate change will also be discussed. Features Explains how geospatial information can best serve environmental management needs, including ecosystem change, resource utilization, land use management, and environmental pollution. Examines the environmental impacts of information technology advancements with regard to global environmental and climate change. Focuses on the creation, collection, storage, processing, modeling, interpretation, display and dissemination of environmental spatio-temporal data. Presents examples of applications for spatial information sciences regarding the assessment, monitoring, and modeling of natural resources. Includes practical case studies in every chapter.
Remote sensing plays a pivotal role in understanding where and how floods and glacier geohazards occur; their severity, causes and types; and the risk that they may pose to populations, activities and properties. By providing a spectrum of imaging capabilities, resolutions and temporal and spatial coverage, remote sensing data acquired from satellite, aerial and ground-based platforms provide key geo-information to characterize and model these processes. This book includes research papers on novel technologies (e.g., sensors, platforms), data (e.g., multi-spectral, radar, laser scanning, GPS, gravity) and analysis methods (e.g., change detection, offset tracking, structure from motion, 3D modeling, radar interferometry, automated classification, machine learning, spectral indices, probabilistic approaches) for flood and glacier imaging. Through target applications and case studies distributed globally, these articles contribute to the discussion on the current potential and limitations of remote sensing in this specialist research field, as well as the identification of trends and future perspectives.
In a rapidly changing world, there is an ever-increasing need to monitor the Earth’s resources and manage it sustainably for future generations. Earth observation from satellites is critical to provide information required for informed and timely decision making in this regard. Satellite-based earth observation has advanced rapidly over the last 50 years, and there is a plethora of satellite sensors imaging the Earth at finer spatial and spectral resolutions as well as high temporal resolutions. The amount of data available for any single location on the Earth is now at the petabyte-scale. An ever-increasing capacity and computing power is needed to handle such large datasets. The Google Earth Engine (GEE) is a cloud-based computing platform that was established by Google to support such data processing. This facility allows for the storage, processing and analysis of spatial data using centralized high-power computing resources, allowing scientists, researchers, hobbyists and anyone else interested in such fields to mine this data and understand the changes occurring on the Earth’s surface. This book presents research that applies the Google Earth Engine in mining, storing, retrieving and processing spatial data for a variety of applications that include vegetation monitoring, cropland mapping, ecosystem assessment, and gross primary productivity, among others. Datasets used range from coarse spatial resolution data, such as MODIS, to medium resolution datasets (Worldview -2), and the studies cover the entire globe at varying spatial and temporal scales.
This book deals with the Tsunami intrusion in the lower plain in the Tohoku region and role played by the coastal and fluvial landforms in the damages. The land-use patterns and the recent urbanization has also been partly responsible for a risk level enhancement. The 2011 East Japan Earthquake and Tsunami has violently hit the coastal plain in the Tohoku and Kanto regions. The coastal geomorphology of these regions have played an important role in the impacts of this natural disaster. The authors introduce tectonic settings, explain and assess these different risks, and discuss future disaster prevention and mitigation planning.
This book includes a selection of the best papers presented at the Jinan Forum on Geography and Ecological Sustainability held in Guangzhou, China, from 17 to 19 February 2017, as well as several invited papers. It discusses concepts, methods, and applications in geography and ecology with an emphasis on various issues challenging ecological sustainability in China. Chapters are written by leading scholars and researchers from a variety of disciplines including geography, ecology, environmental science and policy, and economics. Case studies are predominantly drawn from Southern China, where nearly four decades of dramatic urbanization has caused economic and ecological strains on land and people. This book will appeal to a wide readership including researchers, upper-division undergraduate and graduate students, and professionals in the fields of sustainability science, geography, ecology, and environmental science and policy.
Computers in Earth and Environmental Sciences: Artificial Intelligence and Advanced Technologies in Hazards and Risk Management addresses the need for a comprehensive book that focuses on multi-hazard assessments, natural and manmade hazards, and risk management using new methods and technologies that employ GIS, artificial intelligence, spatial modeling, machine learning tools and meta-heuristic techniques. The book is clearly organized into four parts that cover natural hazards, environmental hazards, advanced tools and technologies in risk management, and future challenges in computer applications to hazards and risk management. Researchers and professionals in Earth and Environmental Science who require the latest technologies and advances in hazards, remote sensing, geosciences, spatial modeling and machine learning will find this book to be an invaluable source of information on the latest tools and technologies available. - Covers advanced tools and technologies in risk management of hazards in both the Earth and Environmental Sciences - Details the benefits and applications of various technologies to assist researchers in choosing the most appropriate techniques for purpose - Expansively covers specific future challenges in the use of computers in Earth and Environmental Science - Includes case studies that detail the applications of the discussed technologies down to individual hazards
Geomatics is a neologism, the use of which is becoming increasingly widespread, even if it is not still universally accepted. It includes several disciplines and te- niques for the study of the Earth’s surface and its environments, and computer science plays a decisive role. A more meaningful and appropriate expression is G- spatial Information or GeoInformation. Geo-spatial Information embeds topography in its more modern forms (measurements with electronic instrumentation, sophisticated techniques of data analysis and network compensation, global satellite positioning techniques, laser scanning, etc.), analytical and digital photogrammetry, satellite and airborne remote sensing, numerical cartography, geographical information systems, decision support systems, WebGIS, etc. These specialized elds are intimately interrelated in terms of both the basic science and the results pursued: rigid separation does not allow us to discover several common aspects and the fundamental importance assumed in a search for solutions in the complex survey context. The objective pursued by Mario A. Gomarasca, one that is only apparently modest, is to publish an integrated text on the surveying theme, containing simple and comprehensible concepts relevant to experts in Geo-spatial Information and/or speci cally in one of the disciplines that compose it. At the same time, the book is rigorous and synthetic, describing with precision the main instruments and methods connected to the multiple techniques available today.