Download Free Molecular Science For Drug Development And Biomedicine Book in PDF and EPUB Free Download. You can read online Molecular Science For Drug Development And Biomedicine and write the review.

This book is a printed edition of the Special Issue "Molecular Science for Drug Development and Biomedicine" that was published in IJMS
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.
This book focuses on the new discipline of translational medicine as it pertains to drug development within the pharmaceutical and biotechnology industry. It is essential for anyone interested in translational medicine from a variety of backgrounds: university institutes, medical schools, pharmaceutical companies and drug development researchers and decision-makers.
Molecular Evolutionary Models in Drug Discovery explores the application of evolutionary molecular models in drug discovery in which secondary metabolites play a fundamental role. Secondary metabolites are not produced in isolation, they are the result of the interaction of genes, metabolism and the environment. The book examines the role of secondary metabolites as leads in drug discovery and on the development of a rational bioprospecting model for new medicines based on the evolution of secondary metabolism. These evolutionary models are part of biological systems and are the most reliable expression of the functioning of living beings. - Examines the integration and application of evolutionary models in the pharmaceutical industry to create new drug development platforms - Investigates the biotechnological prospecting of secondary metabolites and their potential use in the discovery of new drugs - Evaluates the ecosystem of living beings and how its molecular adaptation might improve the success of therapies
This new edition offers a state-of-the-art and integrative vision of pharmacogenomics by exploring new concepts and practical methodologies focusing on disease treatments, from cancers to cardiovascular and neurodegenerative disorders and more. The collection of these theoretical and experimental approaches facilitates problem-solving by tackling the complexity of personalized drug discovery and development. Written by leading experts in their fields for the highly successful Methods in Molecular Biology series, the book aims to provide across-the-board resources to support the translation of pharmacogenomics into better individualized health care. Authoritative and up-to-date, Pharmacogenomics in Drug Discovery and Development, Third Edition aims to aid researchers in approaching the challenges in pharmacogenomics and personalized medicine with the introduction of these novel ideas and cutting-edge methodologies.
Drug development, the processes by which a chemical compound becomes a "drug" and is approved for sale by the FDA and European and Asian regulators, is not for the faint-of-heart or the shortsighted. Designing and monitoring studies, obtaining and analyzing scientific data, and reconciling clinical results against the ethical constraints and regulatory guidelines of government agencies, requires a complex interaction of in-house specialists and academic and commercial consultants worldwide. Scientific, technical, and tactical considerations play out in an environment where a balance must be struck between the often-competing interests of the corporation, its investors, government regulators, and the safety and well being of intended patients. All the while, dwindling patent protections impose an ever-contracting timeframe for success. Written to be accessible to a wide audience, NEW DRUGS provides a thorough, succinct, and practical understanding of these drug-development processes. If you're involved in the pharmaceutical industry, NEW DRUGS will provide scientific and management tools to increase the likelihood of regulatory approval at each phase of your compound's development. If you're a patient or consumer, NEW DRUGS will enable you to intelligently discuss medications with your health-care provider and empower you to make informed decisions at the pharmacy. If your portfolio, rather than your health, makes you an interested observer of the fortunes of this critical sector of the US economy, NEW DRUGS will help you to decode press releases and annual reports, so that you can recognize and invest in well-run companies with promising products.
Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.
Peptide Applications in Biomedicine, Biotechnology and Bioengineering summarizes the current knowledge on peptide applications in biomedicine, biotechnology and bioengineering. After a general introduction to peptides, the book addresses the many applications of peptides in biomedicine and medical technology. Next, the text focuses on peptide applications in biotechnology and bioengineering and reviews of peptide applications in nanotechnology. This book is a valuable resource for biomaterial scientists, polymer scientists, bioengineers, mechanical engineers, synthetic chemists, medical doctors and biologists. - Presents a self-contained work for the field of biomedical peptides - Summarizes the current knowledge on peptides in biomedicine, biotechnology and bioengineering - Covers current and potential applications of biomedical peptides
This second edition of a very successful book is thoroughly updated with existing chapters completely rewritten while the content has more than doubled from 16 to 36 chapters. As with the first edition, the focus is on industrial pharmaceutical research, written by a team of industry experts from around the world, while quality and safety management, drug approval and regulation, patenting issues, and biotechnology fundamentals are also covered. In addition, this new edition now not only includes biotech drug development but also the use of biopharmaceuticals in diagnostics and vaccinations. With a foreword by Robert Langer, Kenneth J Germeshausen Professor of Chemical and Biomedical Engineering at MIT and member of the National Academy of Engineering and the National Academy of Sciences.
Motivated by the explosion of molecular data on humans-particularly data associated with individual patients-and the sense that there are large, as-yet-untapped opportunities to use this data to improve health outcomes, Toward Precision Medicine explores the feasibility and need for "a new taxonomy of human disease based on molecular biology" and develops a potential framework for creating one. The book says that a new data network that integrates emerging research on the molecular makeup of diseases with clinical data on individual patients could drive the development of a more accurate classification of diseases and ultimately enhance diagnosis and treatment. The "new taxonomy" that emerges would define diseases by their underlying molecular causes and other factors in addition to their traditional physical signs and symptoms. The book adds that the new data network could also improve biomedical research by enabling scientists to access patients' information during treatment while still protecting their rights. This would allow the marriage of molecular research and clinical data at the point of care, as opposed to research information continuing to reside primarily in academia. Toward Precision Medicine notes that moving toward individualized medicine requires that researchers and health care providers have access to very large sets of health- and disease-related data linked to individual patients. These data are also critical for developing the information commons, the knowledge network of disease, and ultimately the new taxonomy.