Download Free Molecular Mechanisms And Physiological Significance Of Organelle Interactions And Cooperation Volume Ii Book in PDF and EPUB Free Download. You can read online Molecular Mechanisms And Physiological Significance Of Organelle Interactions And Cooperation Volume Ii and write the review.

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Eukaryotic cells contain distinct membrane-bound organelles, which compartmentalise cellular proteins to fulfil a variety of vital functions. Many organelles have long been regarded as isolated and static entities (e.g., peroxisomes, mitochondria, lipid droplets), but it is now evident that they display dynamic changes, interact with each other, share certain proteins and show metabolic cooperation and cross-talk. Despite great advances in the identification and characterisation of essential components and molecular mechanisms associated with the biogenesis and function of organelles, information on how organelles interact and are incorporated into metabolic pathways and signaling networks is just beginning to emerge. Organelle cooperation requires sophisticated targeting systems which regulate the proper distribution of shared proteins to more than one organelle. Organelle motility and membrane remodeling support organelle interaction and contact. This contact can be mediated by membrane proteins residing on different organelles which can serve as molecular tethers to physically link different organelles together. They can also contribute to the exchange of metabolites and ions, or act in the assembly of signaling platforms. In this regard organelle communication events have been associated with important cellular functions such as apoptosis, antiviral defense, organelle division/biogenesis, ROS metabolism and signaling, and various metabolic pathways such as breakdown of fatty acids or cholesterol biosynthesis. In this research topic we will focus on recent novel findings on the underlying molecular mechanisms and physiological significance of organelle interaction and cooperation with a particular focus on mitochondria, peroxisomes, endoplasmic reticulum, lysosomes and lipid droplets and their impact on the regulation of cellular homeostasis. Our understanding of how organelles physically interact and use cellular signaling systems to coordinate functional networks between each other is still in its infancy. Nevertheless recent discoveries of defined membrane structures such as the mitochondria-ER associated membranes (MAM) are revealing how membrane domains enriched in specific proteins transmit signals across organelle boundaries, allowing one organelle to influence the function of another. In addition to its role as a mediator between mitochondria and the ER, contacts between the MAM and peroxisomes contribute to antiviral signaling, and specialised regions of the ER are supposed to initiate peroxisome biogenesis, whereas intimate contacts between peroxisomes, lipid droplets and the ER mediate lipid metabolism. In line with these observations it is tempting to speculate that further physical contact sites between other organelles exist. Alternatively, novel regulated vesicle trafficking pathways between organelles (e.g., mitochondria to peroxisomes or lysosomes) have been discovered implying another mode of organelle communication. Identifying the key molecular players of such specialised membrane structures will be a prerequisite to understand how organelle communication is physically accomplished and will lead to the identification of new regulatory networks. In addition to the direct transmission of interorganellar information, cytosolic messenger systems (e.g., kinase/phosphatase systems or redox signaling) may contribute to the coordination of organelle functions. This research topic will integrate new findings from both modes of communication and will provide new perspectives for the functional significance of cross-talk among organelles. We would like to thank all the researchers who contributed their valuable work to this research topic. Furthermore, we are grateful to the reviewers and Associate Editors who contributed valuable comments and positive criticism to improve the contributions.
The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.
This book provides the first comprehensive coverage of the quickly evolving research field of membrane contact sites (MCS). A total of 16 chapters explain their organization and role and unveil the significance of MCS for various diseases. MCS, the intracellular structures where organellar membranes come in close contact with one another, mediate the exchange of proteins, lipids, and ions. Via these functions, MCS are critical for the survival and the growth of the cell. Owing to that central role in the functioning of cells, MCS dysfunctions lead to important defects of human physiology, influence viral and bacterial infection, and cause disease such as inflammation, type II diabetes, neurodegenerative disorders, and cancer. To approach such a multifaceted topic, this volume assembles a series of chapters dealing with the full array of research about MCS and their respective roles for diseases. Most chapters also introduce the history and the state of the art of MCS research, which will initiate discussion points for the respective types of MCS for years to come. This work will appeal to all cell biologists as well as researchers on diseases that are impacted by MCS dysfunction. Additionally, it will stimulate graduate students and postdocs who will energize, drive, and develop the research field in the near future.
Nitric oxide (NO) is a gas that transmits signals in an organism. Signal transmission by a gas that is produced by one cell and which penetrates through membranes and regulates the function of another cell represents an entirely new principle for signaling in biological systems. NO is a signal molecule of key importance for the cardiovascular system acting as a regulator of blood pressure and as a gatekeeper of blood flow to different organs. NO also exerts a series of other functions, such as acting a signal molecule in the nervous system and as a weapon against infections. NO is present in most living creatures and made by many different types of cells. NO research has led to new treatments for treating heart as well as lung diseases, shock, and impotence. Scientists are currently testing whether NO can be used to stop the growth of cancerous tumors, since the gas can induce programmed cell death, apoptosis. This book is the first comprehensive text on nitric oxide to cover all aspects--basic biology, chemistry, pathobiology, effects on various disease states, and therapeutic implications. - Edited by Nobel Laureate Louis J. Ignarro, editor of the Academic Press journal, Nitric Oxide - Authored by world experts on nitric oxide - Includes an overview of basic principles of biology and chemical biology - Covers principles of pathobiology, including the nervous system, cardiovascular function, pulmonary function, and immune defense
Impacts of Agriculture on Human Health and Nutrition is a component of Encyclopedia of Food and Agricultural Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Agriculture on Human Health and Nutrition provides the essential aspects and a number of issues of importance in human life: Global Prevalence of Micronutrient Malnutrition and Impacts on the Health of Children; Community-Centered Food-Based Strategies for Alleviating and Preventing Malnutrition; Influence of Mineral Fertilizers on Nutritional Quality of Staple Food Crops; Molecular Genetic Approaches to Improve the Nutritional Quality of Staple Food Crops; Nutritional Consequences of Using Organic Agricultural Methods in Developing Countries which are then expanded into multiple subtopics, each as a chapter. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.
The Biogenesis of Cellular Organelles represents a comprehensive summary of recent advances in the study of the biogenesis and functional dynamics of the major organelles operating in the eukaryotic cell. This book begins by placing the study of organelle biogenesis in a historical perspective by describing past scientific strategies, theories, and findings and relating these foundations to current investigations. Reviews of protein and lipid mediators important for organelle biogenesis are then presented, and are followed by summaries focused on the endoplasmic reticulum, Golgi, lysosome, nucleus, mitochondria, and peroxisome.