Download Free Modules Over Affine Lie Algebras At Critical Level And Quantum Groups Book in PDF and EPUB Free Download. You can read online Modules Over Affine Lie Algebras At Critical Level And Quantum Groups and write the review.

The first account of local geometric Langlands Correspondence, a new area of mathematical physics developed by the author.
This volume contains the proceedings of the tenth international conference on Representation Theory of Algebraic Groups and Quantum Groups, held August 2-6, 2010, at Nagoya University, Nagoya, Japan. The survey articles and original papers contained in this volume offer a comprehensive view of current developments in the field. Among others reflecting recent trends, one central theme is research on representations in the affine case. In three articles, the authors study representations of W-algebras and affine Lie algebras at the critical level, and three other articles are related to crystals in the affine case, that is, Mirkovic-Vilonen polytopes for affine type $A$ and Kerov-Kirillov-Reshetikhin type bijection for affine type $E_6$. Other contributions cover a variety of topics such as modular representation theory of finite groups of Lie type, quantum queer super Lie algebras, Khovanov's arc algebra, Hecke algebras and cyclotomic $q$-Schur algebras, $G_1T$-Verma modules for reductive algebraic groups, equivariant $K$-theory of quantum vector bundles, and the cluster algebra. This book is suitable for graduate students and researchers interested in geometric and combinatorial representation theory, and other related fields.
This is an introduction to the theory of affine Lie Algebras, to the theory of quantum groups, and to the interrelationships between these two fields that are encountered in conformal field theory.
These proceedings are from the Tenth International Conference on Representations of Algebras and Related Topics (ICRA X) held at The Fields Institute. In addition to the traditional ``instructional'' workshop preceding the conference, there were also workshops on ``Commutative Algebra, Algebraic Geometry and Representation Theory'', ``Finite Dimensional Algebras, Algebraic Groups and Lie Theory'', and ``Quantum Groups and Hall Algebras''. These workshops reflect the latest developments and the increasing interest in areas that are closely related to the representation theory of finite dimensional associative algebras. Although these workshops were organized separately, their topics are strongly interrelated. The workshop on Commutative Algebra, Algebraic Geometry and Representation Theory surveyed various recently established connections, such as those pertaining to the classification of vector bundles or Cohen-Macaulay modules over Noetherian rings, coherent sheaves on curves, or ideals in Weyl algebras. In addition, methods from algebraic geometry or commutative algebra relating to quiver representations and varieties of modules were presented. The workshop on Finite Dimensional Algebras, Algebraic Groups and Lie Theory surveyed developments in finite dimensional algebras and infinite dimensional Lie theory, especially as the two areas interact and may have future interactions. The workshop on Quantum Groups and Hall Algebras dealt with the different approaches of using the representation theory of quivers (and species) in order to construct quantum groups, working either over finite fields or over the complex numbers. In particular, these proceedings contain a quite detailed outline of the use of perverse sheaves in order to obtain canonical bases. The book is recommended for graduate students and researchers in algebra and geometry.
Vadim Knizhnik was one of the most promising theoretical physicists in the world. Unfortunately, he passed away at the very young age of 25 years. This memorial volume is to honor his contributions in Theoretical Physics. This is perhaps one of the most important collections of articles on the theoretical developments in String Theory, Conformal Field Theory and related topics. It consists of contributions from world-renowned physicists who have met Vadim Knizhnik personally and whom the late Knizhnik really respected. The contributions are systematic and pedagogical in format.
This book contains the proceedings of the 2012–2014 Southeastern Lie Theory Workshop Series held at North Carolina State University in April 2012, at College of Charleston in December 2012, at Louisiana State University in May 2013, and at University of Georgia in May 2014. Some of the articles by experts in the field survey recent developments while others include new results in representations of Lie algebras, and quantum groups, vertex (operator) algebras and Lie superalgebras.
This volume is the result of two international workshops; Infinite Analysis 11 – Frontier of Integrability – held at University of Tokyo, Japan in July 25th to 29th, 2011, and Symmetries, Integrable Systems and Representations held at Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the reader will find some recent developments in the field of mathematical physics and their interactions with several other domains.
This volume contains the proceedings of two AMS Special Sessions "Geometric and Algebraic Aspects of Representation Theory" and "Quantum Groups and Noncommutative Algebraic Geometry" held October 13–14, 2012, at Tulane University, New Orleans, Louisiana. Included in this volume are original research and some survey articles on various aspects of representations of algebras including Kac—Moody algebras, Lie superalgebras, quantum groups, toroidal algebras, Leibniz algebras and their connections with other areas of mathematics and mathematical physics.
This book contains the proceedings of the 2009-2011 Southeastern Lie Theory Workshop Series, held October 9-11, 2009 at North Carolina State University, May 22-24, 2010, at the University of Georgia, and June 1-4, 2011 at the University of Virginia. Some of the articles, written by experts in the field, survey recent developments while others include new results in Lie algebras, quantum groups, finite groups, and algebraic groups.
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.