Download Free Modulation Resolution And Signal Processing In Radar Sonar And Related Systems Book in PDF and EPUB Free Download. You can read online Modulation Resolution And Signal Processing In Radar Sonar And Related Systems and write the review.

Electronics and Instrumentation, Volume 35: Modulation, Resolution and Signal Processing in Radar, Sonar and Related Systems presents the practical limitations and potentialities of advanced modulation systems. This book discusses the concepts and techniques in the radar context, but they are equally essential to sonar and to a wide range of signaling and data-processing applications, including seismology, radio astronomy, and band-spread communications. Organized into 15 chapters, this volume begins with an overview of the principal developments sought in pulse radar. This text then provides a discussion and analysis of a wide range of various modulation systems. Other chapters consider the intrinsic Doppler resolving power of a radar system. This book discusses as well the power illuminating a radar or sonar target that may be comprised of one or more discrete pulses. The final chapter deals with the transmitter-modulator circuits and valves. This book is a valuable resource for electronic engineers and scientists.
Additive and multiplicative noise in the information signal can significantly limit the potential of complex signal processing systems, especially when those systems use signals with complex phase structure. During the last few years this problem has been the focus of much research, and its solution could lead to profound improvements in applications of complex signals and coherent signal processing. Signal Processing Noise sets forth a generalized approach to signal processing in multiplicative and additive noise that represents a remarkable advance in signal processing and detection theory. This approach extends the boundaries of the noise immunity set by classical and modern signal processing theories, and systems constructed on this basis achieve better detection performance than that of systems currently in use. Featuring the results of the author's own research, the book is filled with examples and applications, and each chapter contains an analysis of recent observations obtained by computer modelling and experiments. Tables and illustrations clearly show the superiority of the generalized approach over both classical and modern approaches to signal processing noise. Addressing a fundamental problem in complex signal processing systems, this book offers not only theoretical development, but practical recommendations for raising noise immunity in a wide range of applications.
The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation process, which is concerned with the interactions of radiation and matter; the design of the scintillation counter; and the wide range of applications of scintillation counters in pure and applied science. The book is easy to read despite the complex nature of the subject it attempts to discuss. It is organized such that the first five chapters illustrate the fundamental concepts of scintillation counting. Chapters 6 to 10 detail the properties and applications of organic scintillators, while the next four chapters discuss inorganic scintillators. The last two chapters provide a review of some outstanding problems and a postscript. Nuclear physicists, radiation technologists, and postgraduate students of nuclear physics will find the book a good reference material.
Statistical Theory of Signal Detection, Second Edition provides an elementary introduction to the theory of statistical testing of hypotheses that is related to the detection of signals in radar and communications technology. This book presents a comprehensive survey of digital communication systems. Organized into 11 chapters, this edition begins with an overview of the theory of signal detection and the typical detection problem. This text then examines the goals of the detection system, which are defined through an analogy with the testing of statistical hypotheses. Other chapters consider the noise fluctuations in terms of probability distributions whereby the statistical information is used to design a receiver that attains the maximum rate of successful detections in a long series of trials. This book discusses as well the criteria of success and failure in statistical situations. The final chapter deals with the types of stochastic signals. This book is a valuable resource for mathematicians and engineers.
Electronics and Instrumentation, Volume 36: Basic Matrix Analysis and Synthesis presents the application of matrix methods to practical electronics problems. This book focuses on transistor applications. Organized into three parts, this volume begins with an overview of the fundamental theory of twoports and explains the mechanisms of matrix and determinant operations with applications to the study of twoport networks, both active and passive. This text then explains the concept of impedance transformation and image matching in the different matrix domains. This book presents as well the analysis and synthesis of active networks. The final part deals with the mathematical model concepts of transistors and vacuum tubes that are freely applied to a wide range of problems with an emphasis on practical applications such as conventional amplifiers, single-, and multi-stage transistor feedback amplifiers and oscillators. This book is a valuable resource for electronics engineers as well as for students with some grounding in mathematics and network theory.
Offering radar-related software for the analysis and design of radar waveform and signal processing, Radar Signal Analysis and Processing Using MATLAB provides a comprehensive source of theoretical and practical information on radar signals, signal analysis, and radar signal processing with companion MATLAB code. Aft
Principles of Modern Radar: Basic Principles is a comprehensive text for courses in radar systems and technology, a professional training textbook for formal in-house courses and for new hires; a reference for ongoing study following a radar short course and a self-study and professional reference book.
Learn about the most recent theoretical and practical advances in radar signal processing using tools and techniques from compressive sensing. Providing a broad perspective that fully demonstrates the impact of these tools, the accessible and tutorial-like chapters cover topics such as clutter rejection, CFAR detection, adaptive beamforming, random arrays for radar, space-time adaptive processing, and MIMO radar. Each chapter includes coverage of theoretical principles, a detailed review of current knowledge, and discussion of key applications, and also highlights the potential benefits of using compressed sensing algorithms. A unified notation and numerous cross-references between chapters make it easy to explore different topics side by side. Written by leading experts from both academia and industry, this is the ideal text for researchers, graduate students and industry professionals working in signal processing and radar.
Radar has been an important topic since its introduction, in a military context, during World War II. Due to advances in technology, it has been necessary to refine the algorithms employed within the signal processing architecture. Hence, this book provides a series of chapters examining some topics in modern radar signal processing. These include synthetic aperture radar, multiple-input multiple-output radar, as well as a series of chapters examining other key issues relevant to the central theme of the book.