Download Free Modulation And Coding Techniques In Wireless Communications Book in PDF and EPUB Free Download. You can read online Modulation And Coding Techniques In Wireless Communications and write the review.

The high level of technical detail included in standards specifications can make it difficult to find the correlation between the standard specifications and the theoretical results. This book aims to cover both of these elements to give accessible information and support to readers. It explains the current and future trends on communication theory and shows how these developments are implemented in contemporary wireless communication standards. Examining modulation, coding and multiple access techniques, the book is divided into two major sections to cover these functions. The two-stage approach first treats the basics of modulation and coding theory before highlighting how these concepts are defined and implemented in modern wireless communication systems. Part 1 is devoted to the presentation of main L1 procedures and methods including modulation, coding, channel equalization and multiple access techniques. In Part 2, the uses of these procedures and methods in the wide range of wireless communication standards including WLAN, WiMax, WCDMA, HSPA, LTE and cdma2000 are considered. An essential study of the implementation of modulation and coding techniques in modern standards of wireless communication Bridges the gap between the modulation coding theory and the wireless communications standards material Divided into two parts to systematically tackle the topic - the first part develops techniques which are then applied and tailored to real world systems in the second part Covers special aspects of coding theory and how these can be effectively applied to improve the performance of wireless communications systems
This book discusses the latest channel coding techniques, MIMO systems, and 5G channel coding evolution. It provides a comprehensive overview of channel coding, covering modern techniques such as turbo codes, low-density parity-check (LDPC) codes, space–time coding, polar codes, LT codes, and Raptor codes as well as the traditional codes such as cyclic codes, BCH, RS codes, and convolutional codes. It also explores MIMO communications, which is an effective method for high-speed or high-reliability wireless communications. It also examines the evolution of 5G channel coding techniques. Each of the 13 chapters features numerous illustrative examples for easy understanding of the coding techniques, and MATLAB-based programs are integrated in the text to enhance readers’ grasp of the underlying theories. Further, PC-based MATLAB m-files for illustrative examples are included for students and researchers involved in advanced and current concepts of coding theory.
Preface. Abbreviations. 1. Introduction to modulation and coding. 2. Principles of linear modulation. 3. Modulation for non-linear systems. 4. Modem design. 5. Principles of FEC Coding. 6. Cyclic block codes. 7. Convolutionals codes. 8. Coded modulation. 9. Modulation and coding on multipath channels. 10. OFDM. 11. Turbo-codes. Appendix 1. Finite field theory. Appendix 2. The MAP algorithm.
This book presents a thorough examination of index modulation, an emerging 5G modulation technique. It includes representative transmitter and receiver design, optimization, and performance analysis of index modulation in various domains. First, the basic spatial modulation system for the spatial domain is introduced. Then, the development of a generalized pre-coding aided quadrature spatial modulation system as well as a virtual spatial modulation system are presented. For the space-time domain, a range of differential spatial modulation systems are examined, along with the pre-coding design. Both basic and enhanced index modulated OFDM systems for the frequency domain are discussed, focusing on the verification of their strong capabilities in inter-carrier interference mitigation. Finally, key open problems are highlighted and future research directions are considered. Designed for researchers and professionals, this book is essential for anyone working in communications networking, 5G, and system design. Advanced-level students of engineering and computer science interested in efficiency techniques will also find the content valuable.
A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.
The high level of technical detail included in standards specifications can make it difficult to find the correlation between the standard specifications and the theoretical results. This book aims to cover both of these elements to give accessible information and support to readers. It explains the current and future trends on communication theory and shows how these developments are implemented in contemporary wireless communication standards. Examining modulation, coding and multiple access techniques, the book is divided into two major sections to cover these functions. The two-stage approach first treats the basics of modulation and coding theory before highlighting how these concepts are defined and implemented in modern wireless communication systems. Part 1 is devoted to the presentation of main L1 procedures and methods including modulation, coding, channel equalization and multiple access techniques. In Part 2, the uses of these procedures and methods in the wide range of wireless communication standards including WLAN, WiMax, WCDMA, HSPA, LTE and cdma2000 are considered. An essential study of the implementation of modulation and coding techniques in modern standards of wireless communication Bridges the gap between the modulation coding theory and the wireless communications standards material Divided into two parts to systematically tackle the topic - the first part develops techniques which are then applied and tailored to real world systems in the second part Covers special aspects of coding theory and how these can be effectively applied to improve the performance of wireless communications systems
Wireless technology is a truly revolutionary paradigm shift, enabling multimedia communications between people and devices from any location. It also underpins exciting applications such as sensor networks, smart homes, telemedicine, and automated highways. This book provides a comprehensive introduction to the underlying theory, design techniques and analytical tools of wireless communications, focusing primarily on the core principles of wireless system design. The book begins with an overview of wireless systems and standards. The characteristics of the wireless channel are then described, including their fundamental capacity limits. Various modulation, coding, and signal processing schemes are then discussed in detail, including state-of-the-art adaptive modulation, multicarrier, spread spectrum, and multiple antenna techniques. The concluding chapters deal with multiuser communications, cellular system design, and ad-hoc network design. Design insights and tradeoffs are emphasized throughout the book. It contains many worked examples, over 200 figures, almost 300 homework exercises, over 700 references, and is an ideal textbook for students.
Now reissued by Cambridge University Press, the updated second edition of this definitive textbook provides an unrivaled introduction to the theoretical and practical fundamentals of wireless communications. Key technical concepts are developed from first principles, and demonstrated to students using over 50 carefully curated worked examples. Over 200 end-of-chapter problems, based on real-world industry scenarios, help cement student understanding. The book provides a thorough coverage of foundational wireless technologies, including wireless local area networks (WLAN), 3G systems, and Bluetooth along with refreshed summaries of recent cellular standards leading to 4G and 5G, insights into the new areas of mobile satellite communications and fixed wireless access, and extra homework problems. Supported online by a solutions manual and lecture slides for instructors, this is the ideal foundation for senior undergraduate and graduate courses in wireless communications.
This textbook takes a unified view of the fundamentals of wireless communication and explains cutting-edge concepts in a simple and intuitive way. An abundant supply of exercises make it ideal for graduate courses in electrical and computer engineering and it will also be of great interest to practising engineers.
This book introduces the theoretical elements at the basis of various classes of algorithms commonly employed in the physical layer (and, in part, in MAC layer) of wireless communications systems. It focuses on single user systems, so ignoring multiple access techniques. Moreover, emphasis is put on single-input single-output (SISO) systems, although some relevant topics about multiple-input multiple-output (MIMO) systems are also illustrated. Comprehensive wireless specific guide to algorithmic techniques Provides a detailed analysis of channel equalization and channel coding for wireless applications Unique conceptual approach focusing in single user systems Covers algebraic decoding, modulation techniques, channel coding and channel equalisation