Download Free Modification And Editing Of Rna Book in PDF and EPUB Free Download. You can read online Modification And Editing Of Rna and write the review.

Naturally occurring RNA always contains numerous biochemically altered nucleotides. They are formed by enzymatic modification of the primary transcripts during the complex RNA maturation process designated RNA modification. A large number of enzymes catalyzing the formation of these modified nucleosides or converting one canonical base into another at the posttranscriptional level have been studied for many years, but only recently have systematic and comparative studies begun. The functions of individual enzymes and/or the modified/edited nucleosides in RNA, however, have remained largely ignored. This book provides advance information on RNA modification, including the associated editing machinery, while offering the reader some perspective on the significance of such modifications in fine-tuning the structure and functions of mature RNA molecules and hence the ability to influence the efficiency and accuracy of genetic expression. Outstanding scientists who are actively working on RNA modification/editing processes have provided up-to-date information on these intriguing cellular processes that have been generated over the course of millions of years in all living organisms. Each review has been written and illustrated for a large audience of readers, not only specialists in the field, but also for advanced students or researchers who want to learn more about recent progress in RNA modification and editing.
This Comprehensive, current text explores the manifold ways in which living cells respond to genomic injury and alterations, including both spontaneous and environmentally induced DNA damage. With more than 4,000 complete references to primary research literature and over 380 color figures throughout, this book is an important text for all courses in DNA repair and mutagenesis. It will also serve as a major reference for all molecular biologists working in cancer biology, recombination, transcription and gene regulation, DNA replication, environmental studies, and biological evolution.
This volume is a timely and comprehensive description of the many facets of DNA and RNA modification-editing processes and to some extent repair mechanisms. Each chapter offers fundamental principles as well as up to date information on recent advances in the field (up to end 2008). They ended by a shortconclusion and future prospect' section and
RNA Editing devotes a chapter to each of the major types of this form of RNA processing. Each chapter is written by a leader in the field and offers fundamental principles, as well as up to date information on recent advances. Numerous examples of RNAs known to be edited are provided throughout the volume, but most importantly, the book highlights the amazing mechanistic diversity found among the various types of RNA editing. RNAs are cleaved, ligated, and deaminated on their way to maturation, and in some cases, their sequence is even altered in the brief moment when RNA polymerase stalls. The chemical reactions that allow RNA editing, and the RNA and proteins that direct the process are all described and will be of interest to students and established researchers in the field as well as those scientists from other disciplines who come across examples of RNA editing.
This volume is comprised of 18 chapters, covering various aspects of DNA modification and RNA modified bases. It also discusses in detail circular RNA, therapeutic oligonucleotides and their different properties. The chemical nature of DNA, RNA, protein and lipids makes these macromolecules easily modifiable, but they are also susceptible to damage from both endogenous and exogenous agents. Alkylation and oxidation show a potential to disrupt the cellular redox equilibrium and cause cellular damage leading to inflammation and even chronic disease. Furthermore, DNA damage can drive mutagenesis and the resulting DNA sequence changes can induce carcinogenesis and cancer progression. Modified nucleosides can occur as a result of oxidative DNA damage and RNA turnover, and are used as markers for various diseases. To function properly some RNA needs to be chemically modified post-transcriptionally. Dysregulation of the RNA-modification pattern or of the levels of the enzymes that catalyze these modifications alters RNA functionality and can result in complex phenotypes, likely due to defects in protein translation. While modifications are best characterized in noncoding ribonucleic acids like tRNA and rRNA, coding mRNAs have also been found to contain modified nucleosides. This book is a valuable resource, not only for graduate students but also researchers in the fields of molecular medicine and molecular biology.
Goringer’s brilliant new work dedicates a chapter to each of the main types of RNA editing – the very first volume to do so. All of the sections here have been written by experts in the various research areas and a specific focus is put on the correlation between RNA structure and function, as well as on the complex cellular machineries that catalyze the different editing reactions. This leads to a "state of the art" compendium of our current knowledge on RNA editing.
This book reviews a novel and exciting field of cellular and molecular biology called epitranscriptomics, which focuses on changes in an organism’s cells resulting from the posttranscriptional modification of cellular RNA. RNA-binding proteins (RBPs) play a crucial role in these posttranscriptional modifications and also support several cellular processes necessary for maintaining RNA homeostasis. Exploring the mechanisms underlying RNA modifications and RBP function is an emerging area of biomedical research, taking the study of gene regulation a step beyond epigenetics. This book reveals that the RNA molecule is not just an information-carrying molecule with some secondary structures. Accordingly, how RNA is modified, regulated, packaged, and controlled is an important aspect. Leading experts address questions such as where the over 170 distinct posttranscriptional RNA modifications are located on the genome, what percentage of mRNAs and noncoding RNAs these modifications include, and how an RNA modification impacts a person’s biology. In closing, the book reviews the role of RNA modifications and RBPs in a variety of diseases and their pathogenesis. Addressing some of the most exciting challenges in epitranscriptomics, this book provides a valuable and engaging resource for researchers in academia and industry studying the phenomena of RNA modification.
he past fifteen years have seen tremendous growth in our understanding of T the many post-transcriptional processing steps involved in producing func tional eukaryotic mRNA from primary gene transcripts (pre-mRNA). New processing reactions, such as splicing and RNA editing, have been discovered and detailed biochemical and genetic studies continue to yield important new insights into the reaction mechanisms and molecular interactions involved. It is now apparent that regulation of RNA processing plays a significant role in the control of gene expression and development. An increased understanding of RNA processing mechanisms has also proved to be of considerable clinical importance in the pathology of inherited disease and viral infection. This volume seeks to review the rapid progress being made in the study of how mRNA precursors are processed into mRNA and to convey the broad scope of the RNA field and its relevance to other areas of cell biology and medicine. Since one of the major themes of RNA processing is the recognition of specific RNA sequences and structures by protein factors, we begin with reviews of RNA-protein interactions. In chapter 1 David Lilley presents an overview of RNA structure and illustrates how the structural features of RNA molecules are exploited for specific recognition by protein, while in chapter 2 Maurice Swanson discusses the structure and function of the large family of hnRNP proteins that bind to pre-mRNA. The next four chapters focus on pre-mRNA splicing.
Genome editing is a powerful new tool for making precise alterations to an organism's genetic material. Recent scientific advances have made genome editing more efficient, precise, and flexible than ever before. These advances have spurred an explosion of interest from around the globe in the possible ways in which genome editing can improve human health. The speed at which these technologies are being developed and applied has led many policymakers and stakeholders to express concern about whether appropriate systems are in place to govern these technologies and how and when the public should be engaged in these decisions. Human Genome Editing considers important questions about the human application of genome editing including: balancing potential benefits with unintended risks, governing the use of genome editing, incorporating societal values into clinical applications and policy decisions, and respecting the inevitable differences across nations and cultures that will shape how and whether to use these new technologies. This report proposes criteria for heritable germline editing, provides conclusions on the crucial need for public education and engagement, and presents 7 general principles for the governance of human genome editing.