Download Free Modern Trends In Advanced Ceramics Book in PDF and EPUB Free Download. You can read online Modern Trends In Advanced Ceramics and write the review.

Starting out from the fundamentals, this book covers the chemistry and physics of ceramic materials, as well as their behavior and resulting properties, including bio-inspired approaches and microstructural aspects. As such, it presents production methods as well as the scientific background, teaching all important mathematical methods: classical, quantum-mechanical, phenomenological, and model-based approaches. Further emphasis is laid upon the current state of the art and possible developments and challenges within the near future.
New ceramic materials are highly appreciated due to their manifold features including mechanical properties, environmental uses, energy applications and many more. This work presents the latest research development and covers a broad range of topics from stabilized zirconia ceramics with enhanced functional properties to ceramic components in medical/biological applications.
Applications of Advanced Ceramics in Science, Technology, and Medicine explores a broad range of advanced ceramic materials and their innovative applications in distinct fields. Chapters cover applications such as actuators, energy storage, environmental health and monitoring, 3D printing, electronics, biomedical engineering and EMI shielding. Chapters provide readers with an overview of the structural and fundamental properties, synthesis strategies and versatile applications of advanced ceramic materials and their composites. The information in the volume will be beneficial for students, research scholars, faculty members and R&D specialists working in the area of material science, nanotechnology, solid-state science, chemical engineering, power sources and renewable energy storage.
The current book contains twenty-two chapters and is divided into three sections. Section I consists of nine chapters which discuss synthesis through innovative as well as modified conventional techniques of certain advanced ceramics (e.g. target materials, high strength porous ceramics, optical and thermo-luminescent ceramics, ceramic powders and fibers) and their characterization using a combination of well known and advanced techniques. Section II is also composed of nine chapters, which are dealing with the aqueous processing of nitride ceramics, the shape and size optimization of ceramic components through design methodologies and manufacturing technologies, the sinterability and properties of ZnNb oxide ceramics, the grinding optimization, the redox behaviour of ceria based and related materials, the alloy reinforcement by ceramic particles addition, the sintering study through dihedral surface angle using AFM and the surface modification and properties induced by a laser beam in pressings of ceramic powders. Section III includes four chapters which are dealing with the deposition of ceramic powders for oxide fuel cells preparation, the perovskite type ceramics for solid fuel cells, the ceramics for laser applications and fabrication and the characterization and modeling of protonic ceramics.
Although ceramics have been known to mankind literally for millennia, research has never ceased. Apart from the classic uses as a bulk material in pottery, construction, and decoration, the latter half of the twentieth century saw an explosive growth of application fields, such as electrical and thermal insulators, wear-resistant bearings, surface coatings, lightweight armour, or aerospace materials. In addition to plain, hard solids, modern ceramics come in many new guises such as fabrics, ultrathin films, microstructures and hybrid composites. Built on the solid foundations laid down by the 20-volume series Materials Science and Technology, Ceramics Science and Technology picks out this exciting material class and illuminates it from all sides. Materials scientists, engineers, chemists, biochemists, physicists and medical researchers alike will find this work a treasure trove for a wide range of ceramics knowledge from theory and fundamentals to practical approaches and problem solutions.
This book presents the fundamentals of advanced ceramics, their stages of development, types and classifications, advanced processing techniques, properties, sintering, and new forms of applications. It highlights specific examples such as alumina, zirconia, Mg-Al-spinels, silicon carbide, silicon nitride, ceramic composites, and thin films with their specific applications. The book reviews progress in perovskite ceramics, in which the synthesis, processing, characterization, and advanced applications of perovskite ceramics are all thoroughly discussed. In addition, developments of perovskite solar cells, the main factors affecting their stability, current problems, development prospects in the research, and application of perovskite solar cells are all highlighted. This book also includes a review of a particular class of rare-earth-based mixed-metal oxides, namely Ln2B2O7 nanostructures (B = Zr, Sn, and Ce), where advantages and disadvantages of each production technique are addressed along with the properties of as-produced nanostructures. The solar photocatalytic uses of Ln2B2O7 nanostructures such as photodegradation of contaminants are also discussed. Yttria-based transparent ceramics for photonic applications are reviewed, along with a discussion of powder synthesis, green body preparation, sintering, and optical properties. In addition, the fundamentals of electrophoretic deposition of hydroxyapatite incorporated composite coatings on metallic substrates are presented and discussed. The different types of ceramics-based self-healing coatings and their fabrication processes have also been reported and discussed in this book. These include titania, zirconia, titanium-alumina, and zirconia-alumina incorporated with Benzotriazole (BTA) as an inhibitor. Advanced ceramic materials that have been used for the purpose of wastewater treatment including ceramic sorbents, resins, aerosols, and ceramic membranes that have been widely used for wastewater treatment purposes are also discussed in depth. Moreover, the book presents the preparation of geopolymers by microwave treatments and explains how their properties can be tuned using microwaves. Furthermore, the future and perspective of these advanced ceramic materials and their modifications to ensure better efficacy toward environmental remediation purposes are highlighted in this book.
Dynamic Response of Advanced Ceramics Discover fundamental concepts and recent advances in experimental, analytical, and computational research into the dynamic behavior of ceramics In Dynamic Response of Advanced Ceramics, an accomplished team of internationally renowned researchers delivers a comprehensive exploration of foundational and advanced concepts in experimental, analytical, and computational aspects of the dynamic behavior of advanced structural ceramics and transparent materials. The book discusses new techniques used for determination of dynamic hardness and dynamic fracture toughness, as well as edge-on-impact experiments for imaging evolving damage patterns at high impact velocities. The authors also include descriptions of the dynamic deformation behavior of icosahedral ceramics and the dynamic behavior of several transparent materials, like chemically strengthened glass and glass ceramics. The developments discussed within the book have applications in everything from high-speed machining to cutting, grinding, and blast protection. Readers will also benefit from a presentation of emerging trends and directions in research on this subject as well as current challenges in experimental and computational domains, including: An introduction to the history of ceramic materials and their dynamic behavior, including examples of material response to high-strain-rate loading An exploration of high-strain-rate experimental techniques, like 1D elastic stress-wave propagation techniques, shock waves, and impact testing Discussions of the static and dynamic responses of ceramics and the shock response of brittle solids An overview of deformation mechanisms during projectile impact on a confined ceramic, including damage evolution during the nonpenetration and penetration phases. Perfect for researchers, scientists, and engineers working on ballistic impact and shock response of brittle materials, Dynamic Response of Advanced Ceramics will also earn a place in the libraries of industry personnel studying impact-resistant solutions for a variety of applications.
Biomaterials created from innovative glass and bioceramic research are emerging as a precursor to several developments useful for solving a wide variety of industry and health related issues. Current Trends on Glass and Ceramic Materials is a review on the latest developments in glass and ceramic materials for technological applications along with biomedical applications in vivo. The volume serves as a useful reference to readers interested in learning about this area of materials science and its multidisciplinary array of applications