Download Free Modern Science Reader Book in PDF and EPUB Free Download. You can read online Modern Science Reader and write the review.

The development of science, according to respected scholars Peter J. Bowler and Iwan Rhys Morus, expands our knowledge and control of the world in ways that affect-but are also affected by-society and culture. In Making Modern Science, a text designed for introductory college courses in the history of science and as a single-volume introduction for the general reader, Bowler and Morus explore both the history of science itself and its influence on modern thought. Opening with an introduction that explains developments in the history of science over the last three decades and the controversies these initiatives have engendered, the book then proceeds in two parts. The first section considers key episodes in the development of modern science, including the Scientific Revolution and individual accomplishments in geology, physics, and biology. The second section is an analysis of the most important themes stemming from the social relations of science-the discoveries that force society to rethink its religious, moral, or philosophical values. Making Modern Science thus chronicles all major developments in scientific thinking, from the revolutionary ideas of the seventeenth century to the contemporary issues of evolutionism, genetics, nuclear physics, and modern cosmology. Written by seasoned historians, this book will encourage students to see the history of science not as a series of names and dates but as an interconnected and complex web of relationships between science and modern society. The first survey of its kind, Making Modern Science is a much-needed and accessible introduction to the history of science, engagingly written for undergraduates and curious readers alike.
“The Knowledge Machine is the most stunningly illuminating book of the last several decades regarding the all-important scientific enterprise.” —Rebecca Newberger Goldstein, author of Plato at the Googleplex A paradigm-shifting work, The Knowledge Machine revolutionizes our understanding of the origins and structure of science. • Why is science so powerful? • Why did it take so long—two thousand years after the invention of philosophy and mathematics—for the human race to start using science to learn the secrets of the universe? In a groundbreaking work that blends science, philosophy, and history, leading philosopher of science Michael Strevens answers these challenging questions, showing how science came about only once thinkers stumbled upon the astonishing idea that scientific breakthroughs could be accomplished by breaking the rules of logical argument. Like such classic works as Karl Popper’s The Logic of Scientific Discovery and Thomas Kuhn’s The Structure of Scientific Revolutions, The Knowledge Machine grapples with the meaning and origins of science, using a plethora of vivid historical examples to demonstrate that scientists willfully ignore religion, theoretical beauty, and even philosophy to embrace a constricted code of argument whose very narrowness channels unprecedented energy into empirical observation and experimentation. Strevens calls this scientific code the iron rule of explanation, and reveals the way in which the rule, precisely because it is unreasonably close-minded, overcomes individual prejudices to lead humanity inexorably toward the secrets of nature. “With a mixture of philosophical and historical argument, and written in an engrossing style” (Alan Ryan), The Knowledge Machine provides captivating portraits of some of the greatest luminaries in science’s history, including Isaac Newton, the chief architect of modern science and its foundational theories of motion and gravitation; William Whewell, perhaps the greatest philosopher-scientist of the early nineteenth century; and Murray Gell-Mann, discoverer of the quark. Today, Strevens argues, in the face of threats from a changing climate and global pandemics, the idiosyncratic but highly effective scientific knowledge machine must be protected from politicians, commercial interests, and even scientists themselves who seek to open it up, to make it less narrow and more rational—and thus to undermine its devotedly empirical search for truth. Rich with illuminating and often delightfully quirky illustrations, The Knowledge Machine, written in a winningly accessible style that belies the import of its revisionist and groundbreaking concepts, radically reframes much of what we thought we knew about the origins of the modern world.
Selected and introduced by Richard Dawkins, The Oxford Book of Modern Science Writing is a celebration of the finest writing by scientists for a wider audience - revealing that many of the best scientists have displayed as much imagination and skill with the pen as they have in the laboratory.This is a rich and vibrant collection that captures the poetry and excitement of communicating scientific understanding and scientific effort from 1900 to the present day. Professor Dawkins has included writing from a diverse range of scientists, some of whom need no introduction, and some of whoseworks have become modern classics, while others may be less familiar - but all convey the passion of great scientists writing about their science.
A wide-ranging exploration of how music has influenced science through the ages, from fifteenth-century cosmology to twentieth-century string theory. In the natural science of ancient Greece, music formed the meeting place between numbers and perception; for the next two millennia, Pesic tells us in Music and the Making of Modern Science, “liberal education” connected music with arithmetic, geometry, and astronomy within a fourfold study, the quadrivium. Peter Pesic argues provocatively that music has had a formative effect on the development of modern science—that music has been not just a charming accompaniment to thought but a conceptual force in its own right. Pesic explores a series of episodes in which music influenced science, moments in which prior developments in music arguably affected subsequent aspects of natural science. He describes encounters between harmony and fifteenth-century cosmological controversies, between musical initiatives and irrational numbers, between vibrating bodies and the emergent electromagnetism. He offers lively accounts of how Newton applied the musical scale to define the colors in the spectrum; how Euler and others applied musical ideas to develop the wave theory of light; and how a harmonium prepared Max Planck to find a quantum theory that reengaged the mathematics of vibration. Taken together, these cases document the peculiar power of music—its autonomous force as a stream of experience, capable of stimulating insights different from those mediated by the verbal and the visual. An innovative e-book edition available for iOS devices will allow sound examples to be played by a touch and shows the score in a moving line.
Once upon a time 'The Scientific Revolution of the 17th century' was an innovative concept that inspired a stimulating narrative of how modern science came into the world. Half a century later, what we now know as 'the master narrative' serves rather as a strait-jacket - so often events and contexts just fail to fit in. No attempt has been made so far to replace the master narrative. H. Floris Cohen now comes up with precisely such a replacement. Key to his path-breaking analysis-cum-narrative is a vision of the Scientific Revolution as made up of six distinct yet narrowly interconnected, revolutionary transformations, each of some twenty-five to thirty years' duration. This vision enables him to explain how modern science could come about in Europe rather than in Greece, China, or the Islamic world. It also enables him to explain how half-way into the 17th century a vast crisis of legitimacy could arise and, in the end, be overcome.
"This book attempts to introduce to its readers major chapters in the history of science. It tries to present science as a human endeavor - a great achievement, and all the more human for it. In place of the story of progress and its obstacles or a parade of truths revealed, this book stresses the contingent and historical nature of scientific knowledge. Knowledge, science included, is always developed by real people, within communities, answering immediate needs and challenges shaped by place, culture, and historical events with resources drawn from their present and past. Chronologically, this book spans from Pythagorean mathematics to Newton's Principle. The book starts in the high Middle Ages and proceeds to introduce the readers to the historian's way of inquiry. At the center of this introduction is the Gothic Cathedral - a grand achievement of human knowledge, rooted in a complex cultural context, and a powerful metaphor for science. The book alternates thematic chapters with chapters concentrating on an era. Yet it attempts to integrate discussion of all different aspects of the making of knowledge: social and cultural settings, challenges and opportunities; intellectual motivations and worries; epistemological assumptions and technical ideas; instruments and procedures. The cathedral metaphor is evoked intermittently throughout, to tie the many themes discussed to the main lesson: that the complex set of beliefs, practices, and institutions we call science is a particular, contingent human phenomenon"--
For decades, Henry Morris has been known as a defender of the Christian faith. It's an auspicious title for such a humble man, yet no one can deny that the grasp Morris has on science and faith issues is staggering. In this updated classic, Morris walks the reader through history "real history" by showing the absurdity of evolution. From a wide variety of sciences, including astronomy, biology, chemistry, physics, and geology, Morris presents clear evidence that the Bible gives us an astonishingly accurate record of the past, present, and future.
Histories of modern science often begin with the heroic battle between Galileo and the Catholic Church, which sparked the Scientific Revolution and led to the world-changing discoveries of Isaac Newton. In reality, more than a millennium before the Renaissance, a succession of scholars paved the way for the discoveries for which Galileo and Newton are credited. In Before Galileo, John Freely investigates the first European scientists, many of them monks, whose influence ranged far beyond the walls of their monasteries. He shows how science and religion coexisted, and places the great discoveries of the age in their rightful context.
Alfred North Whitehead's SCIENCE AND THE MODERN WORLD, originally published in 1925, redefines the concept of modern science. Presaging by more than half a century most of today's cutting-edge thought on the cultural ramifications of science and technology, Whitehead demands that readers understand and celebrate the contemporary, historical, and cultural context of scientific discovery. Taking readers through the history of modern science, Whitehead shows how cultural history has affected science over the ages in relation to such major intellectual themes as romanticism, relativity, quantum theory, religion, and movements for social progress.
In this new edition of the top-selling coursebook, seasoned historians Peter J. Bowler and Iwan Rhys Morus expand on their authoritative survey of how the development of science has shaped our world. Exploring both the history of science and its influence on modern thought, the authors chronicle the major developments in scientific thinking, from the revolutionary ideas of the seventeenth century to contemporary issues in genetics, physics, and more. Thoroughly revised and expanded, the second edition draws on the latest research and scholarship. It also contains two entirely new chapters: one that explores the impact of computing on the development of science, and another that shows how the West used science and technology as tools for geopolitical expansion. Designed for entry-level college courses and as a single-volume introduction for the general reader, Making Modern Science presents the history of science not as a series of names and dates, but as an interconnected and complex web of relationships joining science and society.