Download Free Modern Power Electronics Book in PDF and EPUB Free Download. You can read online Modern Power Electronics and write the review.

Provides comprehensive coverage of the basic principles and methods of electric power conversion and the latest developments in the field This book constitutes a comprehensive overview of the modern power electronics. Various semiconductor power switches are described, complementary components and systems are presented, and power electronic converters that process power for a variety of applications are explained in detail. This third edition updates all chapters, including new concepts in modern power electronics. New to this edition is extended coverage of matrix converters, multilevel inverters, and applications of the Z-source in cascaded power converters. The book is accompanied by a website hosting an instructor’s manual, a PowerPoint presentation, and a set of PSpice files for simulation of a variety of power electronic converters. Introduction to Modern Power Electronics, Third Edition: Discusses power conversion types: ac-to-dc, ac-to-ac, dc-to-dc, and dc-to-ac Reviews advanced control methods used in today’s power electronic converters Includes an extensive body of examples, exercises, computer assignments, and simulations Introduction to Modern Power Electronics, Third Edition is written for undergraduate and graduate engineering students interested in modern power electronics and renewable energy systems. The book can also serve as a reference tool for practicing electrical and industrial engineers.
In high power, high voltage electronics systems, a strategy to manage short timescale energy imbalances is fundamental to the system reliability. Without a theoretical framework, harmful local convergence of energy can affect the dynamic process of transformation, transmission, and storage which create an unreliable system. With an original approach that encourages understanding of both macroscopic and microscopic factors, the authors offer a solution. They demonstrate the essential theory and methodology for the design, modeling and prototyping of modern power electronics converters to create highly effective systems. Current applications such as renewable energy systems and hybrid electric vehicles are discussed in detail by the authors. Key features: offers a logical guide that is widely applicable to power electronics across power supplies, renewable energy systems, and many other areas analyses the short-scale (nano-micro second) transient phenomena and the transient processes in nearly all major timescales, from device switching processes at the nanoscale level, to thermal and mechanical processes at second level explores transient causes and shows how to correct them by changing the control algorithm or peripheral circuit includes two case studies on power electronics in hybrid electric vehicles and renewable energy systems Practitioners in major power electronic companies will benefit from this reference, especially design engineers aiming for optimal system performance. It will also be of value to faculty staff and graduate students specializing in power electronics within academia.
Modern Power Electronics brings thorough coverage of modern power electronics equipment to those in industries: commercial, construction and aerospace. It provides the latest techniques and energy saving applications for working with power. The book starts with a very comprehensive tutorial section which reviews power electronics technology, integrating power semiconductor devices, different classes of converter topologies, PWM techniques and key power electronics application.
Power devices are key to modern power systems, performing functions such as inverting and changing voltages, buffering and switching. Following a device-centric approach, this book covers power electronic applications, semiconductor physics, materials science, application engineering, and key technologies such as MOSFET, IGBT and WBG.
Converter-Based Dynamics and Control of Modern Power Systems addresses the ongoing changes and challenges in rotating masses of synchronous generators, which are transforming dynamics of the electrical system. These changes make it more important to consider and understand the role of power electronic systems and their characteristics in shaping the subtleties of the grid and this book fills that knowledge gap. Balancing theory, discussion, diagrams, mathematics, and data, this reference provides the information needed to acquire a thorough overview of resilience issues and frequency definition and estimation in modern power systems. This book offers an overview of classical power system dynamics and identifies ways of establishing future challenges and how they can be considered at a global level to overcome potential problems. The book is designed to prepare future engineers for operating a system that will be driven by electronics and less by electromechanical systems. - Includes theory on the emerging topic of electrical grids based on power electronics - Creates a good bridge between traditional theory and modern theory to support researchers and engineers - Links the two fields of power systems and power electronics in electrical engineering
Power electronics is an area of extremely important and rapidly changing technology. Technological advancements in the area contribute to performance improvement and cost reduction, with applications proliferating in industrial, commercial, residential, military and aerospace environments. This book is meant to help engineers operating in all these areas to stay up-to-date on the most recent advances in the field, as well as to be a vehicle for clarifying increasingly complex theories and mathematics. This book will be a cost-effective and convenient way for engineers to get up-to-speed on the latest trends in power electronics. The reader will obtain the same level of informative instruction as they would if attending an IEEE course or a training session, but without ever leaving the office or living room! The author is in an excellent position to offer this instruction as he teaches many such courses. - Self-learning advanced tutorial, falling between a traditional textbook and a professional reference. - Almost every page features either a detailed figure or a bulleted chart, accompanied by clear descriptive explanatory text.
Initial material for this book was developed over a period of several years through the introduction in the mid-seventies of a graduate-level course en titled, "Control and Operation of Interconnected Power Systems," at the Georgia Institute of Technology. Subsequent involvement with the utility industry and in teaching continuing education courses on modern power sys tem control and operation contributed to the complimentary treatment of the dynamic aspects of this overall topic. In effect, we have evolved a textbook that provides a thorough under standing of fudamentals as needed by a graduate student with a prior back ground in power systems analysis at the undergraduate level, and in system theory concepts normally provided at the beginning of the graduate level in electrical engineering. It is also designed to provide the depth needed both by the serious graduate student and the power industry engineer involved in the activities of energy control centers and short-term operations planning. As explained in Chapter 2, the entire book can be covered in a two quarter course sequence. The bulk of the material may be covered in one semester. For a two-semester offering, we recommend that students be in volved in some project work to further their depth of understanding. Utility and consulting industry engineers should concentrate on the more advanced concepts and developments usually available at the latter half of each chap ter.
A comprehensive study of microwave vacuum electronic devices and their current and future applications While both vacuum and solid-state electronics continue to evolve and provide unique solutions, emerging commercial and military applications that call for higher power and higher frequencies to accommodate massive volumes of transmitted data are the natural domain of vacuum electronics technology. Modern Microwave and Millimeter-Wave Power Electronics provides systems designers, engineers, and researchers-especially those with primarily solid-state training-with a thoroughly up-to-date survey of the rich field of microwave vacuum electronic device (MVED) technology. This book familiarizes the R&D and academic communities with the capabilities and limitations of MVED and highlights the exciting scientific breakthroughs of the past decade that are dramatically increasing the compactness, efficiency, cost-effectiveness, and reliability of this entire class of devices. This comprehensive text explores a wide range of topics: Traveling-wave tubes, which form the backbone of satellite and airborne communications, as well as of military electronic countermeasures systems Microfabricated MVEDs and advanced electron beam sources Klystrons, gyro-amplifiers, and crossed-field devices "Virtual prototyping" of MVEDs via advanced 3-D computational models High-Power Microwave (HPM) sources Next-generation microwave structures and circuits How to achieve linear amplification Advanced materials technologies for MVEDs A Web site appendix providing a step-by-step walk-through of a typical MVED design process Concluding with an in-depth examination of emerging applications and future possibilities for MVEDs, Modern Microwave and Millimeter-Wave Power Electronics ensures that systems designers and engineers understand and utilize the significant potential of this mature, yet continually developing technology. SPECIAL NOTE: All of the editors' royalties realized from the sale of this book will fund the future research and publication activities of graduate students in the vacuum electronics field.
I May observed that recent developments in power electronics have proceeded in two different directions,namely,low power range power supplies using high frequency PWM technique and medium to high power range energy control systems to serve specific Purpose.
Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES-UETP umbrella in 2010 and 2011, this contributed volume consists of nine chapters written by leading researchers and professionals from the industry as well as academia.