Download Free Modern Molecular Biology Book in PDF and EPUB Free Download. You can read online Modern Molecular Biology and write the review.

Molecular biology has rapidly advanced since the discovery of the basic flow of information in life, from DNA to RNA to proteins. While there are several important and interesting exceptions to this general flow of information, the importance of these biological macromolecules in dictating the phenotypic nature of living creatures in health and disease is paramount. In the last one and a half decades, and particularly after the completion of the Human Genome Project, there has been an explosion of technologies that allow the broad characterization of these macromolecules in physiology, and the perturbations to these macromolecules that occur in diseases such as cancer. In this volume, we will explore the modern approaches used to characterize these macromolecules in an unbiased, systematic way. Such technologies are rapidly advancing our knowledge of the coordinated and complicated changes that occur during carcinogenesis, and are providing vital information that, when correctly interpreted by biostatistical/bioinformatics analyses, can be exploited for the prevention, diagnosis, and treatment of human cancers. The purpose of this volume is to provide an overview of modern molecular biological approaches to unbiased discovery in cancer research. Advances in molecular biology allowing unbiased analysis of changes in cancer initiation and progression will be overviewed. These include the strategies employed in modern genomics, gene expression analysis, and proteomics.
Every day it seems the media focus on yet another new development in biology--gene therapy, the human genome project, the creation of new varieties of animals and plants through genetic engineering. These possibilities have all emanated from molecular biology. A History of Molecular Biology is a complete but compact account for a general readership of the history of this revolution. Michel Morange, himself a molecular biologist, takes us from the turn-of-the-century convergence of molecular biology's two progenitors, genetics and biochemistry, to the perfection of gene splicing and cloning techniques in the 1980s. Drawing on the important work of American, English, and French historians of science, Morange describes the major discoveries--the double helix, messenger RNA, oncogenes, DNA polymerase--but also explains how and why these breakthroughs took place. The book is enlivened by mini-biographies of the founders of molecular biology: Delbrück, Watson and Crick, Monod and Jacob, Nirenberg. This ambitious history covers the story of the transformation of biology over the last one hundred years; the transformation of disciplines: biochemistry, genetics, embryology, and evolutionary biology; and, finally, the emergence of the biotechnology industry. An important contribution to the history of science, A History of Molecular Biology will also be valued by general readers for its clear explanations of the theory and practice of molecular biology today. Molecular biologists themselves will find Morange's historical perspective critical to an understanding of what is at stake in current biological research.
Advanced Methods in Molecular Biology and Biotechnology: A Practical Lab Manual is a concise reference on common protocols and techniques for advanced molecular biology and biotechnology experimentation. Each chapter focuses on a different method, providing an overview before delving deeper into the procedure in a step-by-step approach. Techniques covered include genomic DNA extraction using cetyl trimethylammonium bromide (CTAB) and chloroform extraction, chromatographic techniques, ELISA, hybridization, gel electrophoresis, dot blot analysis and methods for studying polymerase chain reactions. Laboratory protocols and standard operating procedures for key equipment are also discussed, providing an instructive overview for lab work. This practical guide focuses on the latest advances and innovations in methods for molecular biology and biotechnology investigation, helping researchers and practitioners enhance and advance their own methodologies and take their work to the next level. - Explores a wide range of advanced methods that can be applied by researchers in molecular biology and biotechnology - Features clear, step-by-step instruction for applying the techniques covered - Offers an introduction to laboratory protocols and recommendations for best practice when conducting experimental work, including standard operating procedures for key equipment
This manual is an indispensable tool for introducing advanced undergraduates and beginning graduate students to the techniques of recombinant DNA technology, or gene cloning and expression. The techniques used in basic research and biotechnology laboratories are covered in detail. Students gain hands-on experience from start to finish in subcloning a gene into an expression vector, through purification of the recombinant protein. The third edition has been completely re-written, with new laboratory exercises and all new illustrations and text, designed for a typical 15-week semester, rather than a 4-week intensive course. The "project approach to experiments was maintained: students still follow a cloning project through to completion, culminating in the purification of recombinant protein. It takes advantage of the enhanced green fluorescent protein - students can actually visualize positive clones following IPTG induction. - Cover basic concepts and techniques used in molecular biology research labs - Student-tested labs proven successful in a real classroom laboratories - Exercises simulate a cloning project that would be performed in a real research lab - "Project" approach to experiments gives students an overview of the entire process - Prep-list appendix contains necessary recipes and catalog numbers, providing staff with detailed instructions
In accordance with its predecessor, the completely revised and expanded Second Edition of Modern Microbial Genetics focuses on how bacteria and bacteriophage arrange and rearrange their genetic material through mutation, evolution, and genetic exchange to take optimal advantage of their environment. The text is divided into three sections: DNA Metabolism, Genetic Response, and Genetic Exchange. The first addresses how DNA replicates, repairs itself, and recombines, as well as how it may be manipulated. The second section is devoted to how microorganisms interact with their environment, including chapters on sporulation and stress shock, and the final section contains the latest information on classic exchange mechanisms such as transformation and conjugation. Chapters include: * Gene Expression and Its Regulation * Single-Stranded DNA Phages * Genetic Tools for Dissecting Motility and Development of Myxococcus xanthus * Molecular Mechanism of Quorum Sensing * Transduction in Gram-Negative Bacteria * Genetic Approaches in Bacteria with No Natural Genetic Systems The editors also cultivate an attention to global regulatory systems throughout the book, elucidating how certain genes and operons in bacteria, defined as regulons, network and cooperate to suit the needs of the bacterial cell. With clear appreciation for the impact of molecular genomics, this completely revised and updated edition proves that Modern Microbial Genetics remains the benchmark text in its field.
This book provides an introduction to two important aspects of modern bioch- istry, molecular biology, and biophysics: computer simulation and data analysis. My aim is to introduce the tools that will enable students to learn and use some f- damental methods to construct quantitative models of biological mechanisms, both deterministicandwithsomeelementsofrandomness;tolearnhowconceptsofpr- ability can help to understand important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data. The availability of very capable but inexpensive personal computers and software makes it possible to do such work at a much higher level, but in a much easier way, than ever before. TheExecutiveSummaryofthein?uential2003reportfromtheNationalAcademy of Sciences, “BIO 2010: Transforming Undergraduate Education for Future - search Biologists” [12], begins The interplay of the recombinant DNA, instrumentation, and digital revolutions has p- foundly transformed biological research. The con?uence of these three innovations has led to important discoveries, such as the mapping of the human genome. How biologists design, perform, and analyze experiments is changing swiftly. Biological concepts and models are becoming more quantitative, and biological research has become critically dependent on concepts and methods drawn from other scienti?c disciplines. The connections between the biological sciences and the physical sciences, mathematics, and computer science are rapidly becoming deeper and more extensive.
First published in 1966 as a 60th birthday tribute to Max Delbrck, this influential work is republished as "The Centennial Edition." The book was hailed as "[introducing] into the literature of science, for the first time, a self-conscious historical element in which the participants in scientific discovery engage in writing their own chronicle ("Journal of History of Biology").
Presenting the latest molecular diagnostic techniques in one comprehensive volume The molecular diagnostics landscape has changed dramatically since the last edition of Molecular Microbiology: Diagnostic Principles and Practice in 2011. With the spread of molecular testing and the development of new technologies and their opportunities, laboratory professionals and physicians more than ever need a resource to help them navigate this rapidly evolving field. Editors David Persing and Fred Tenover have brought together a team of experienced researchers and diagnosticians to update this third edition comprehensively, to present the latest developments in molecular diagnostics in the support of clinical care and of basic and clinical research, including next-generation sequencing and whole-genome analysis. These updates are provided in an easy-to-read format and supported by a broad range of practical advice, such as determining the appropriate type and quantity of a specimen, releasing and concentrating the targets, and eliminating inhibitors. Molecular Microbiology: Diagnostic Principles and Practice Presents the latest basic scientific theory underlying molecular diagnostics Offers tested and proven applications of molecular diagnostics for the diagnosis of infectious diseases, including point-of-care testing Illustrates and summarizes key concepts and techniques with detailed figures and tables Discusses emerging technologies, including the use of molecular typing methods for real-time tracking of infectious outbreaks and antibiotic resistance Advises on the latest quality control and quality assurance measures Explores the increasing opportunities and capabilities of information technology Molecular Microbiology: Diagnostic Principles and Practice is a textbook for molecular diagnostics courses that can also be used by anyone involved with diagnostic test selection and interpretation. It is also a useful reference for laboratories and as a continuing education resource for physicians. If you are looking for online access to the latest clinical microbiology content, please visit www.wiley.com/learn/clinmicronow.
Diagnostic Molecular Biology, Second Edition describes the fundamentals of molecular biology in a clear, concise manner with each technique explained within its conceptual framework and current applications of clinical laboratory techniques comprehensively covered. This targeted approach covers the principles of molecular biology, including basic knowledge of nucleic acids, proteins and chromosomes; the basic techniques and instrumentations commonly used in the field of molecular biology, including detailed procedures and explanations; and the applications of the principles and techniques currently employed in the clinical laboratory. Topics such as whole exome sequencing, whole genome sequencing, RNA-seq, and ChIP-seq round out the discussion. Fully updated, this new edition adds recent advances in the detection of respiratory virus infections in humans, like influenza, RSV, hAdV, hRV but also corona. This book expands the discussion on NGS application and its role in future precision medicine. - Provides explanations on how techniques are used to diagnosis at the molecular level - Explains how to use information technology to communicate and assess results in the lab - Enhances our understanding of fundamental molecular biology and places techniques in context - Places protocols into context with practical applications - Includes extra chapters on respiratory viruses (Corona)