Download Free Modelling Soil Erosion By Water Book in PDF and EPUB Free Download. You can read online Modelling Soil Erosion By Water and write the review.

Section 1. Background to the Model Evaluation.- 1. Modelling Soil Erosion by Water.- 2. Towards an Improved Predictive Capability for Soil Erosion under Global Change.- 3. Modelling Soil Erosion in Real Landscapes: a Western European Perspective.- Section 2. Model Evaluation with Common Datasets.- 4. Evaluation of Plot Runoff and Erosion Forecasts using the CSEP and MEDRUSH Models.- 5. Evaluation of the Water Erosion Prediction Project (WEPP) Model for Hillslopes.- 6. GLEAMS Model Evaluation - Hydrology and Erosion Components.- 7. EUROSEM: an Evaluation with Single Event Data from the C5 Watershed, Oklahoma, USA.- 8. Comparison of Simulated and Observed Runoff and Soil Loss on Three Small United States Watersheds.- 9. Validation of Field-Scale Soil Erosion Models using Common Datasets.- Section 3. Model Evaluation with User-Supplied Datasets.- 10. Predicting Runoff in Semiarid Woodlands: Evaluation of the WEPP Model.- 11. Evaluation of Field-Scale Erosion Models on the UK South Downs.- Section 4. Modelling Issues.- 12. Modelling Across Scales: the MEDALUS Family of Models.- 13. Problems Regarding the Use of Soil Erosion Models.- 14. Cross-Scale Aspects of EPA Erosion Studies.- 15. Scale Issues and a Scale Transfer Method for Erosion Modelling.- 16. Infiltration for Soil Erosion Models: Some Temporal and Spatial Complications.- 17. Saturation Overland Flow on Loess Soils in the Netherlands.- 18. Incorporating. Crusting Processes in Erosion Models.- 19. The Role of Soil Aggregates in Soil Erosion Processes.- 20. Process-Based Approaches to Modelling Soil Erosion.- 21. Sensitivity of Sediment-Transport Equations to Errors in Hydraulic Models of Overland Flow.- 22. Gully Erosion: Importance and Model Implications.- 23. Field Data and Erosion Models.- 24. Effects of Agricultural Land Use on Spatial and Temporal Distribution of Soil Erosion in Small Catchments: Implications for Modelling.- 25. Sensitivity of the Model LISEM to Variables Related to Agriculture.- 26. Applying GIS to Catchment-Scale Soil Erosion Modelling.- 27. Snowmelt and Frozen Soils in Simulation Models.- 28. The Use of USLE Components in Models.- Section 5. Model Descriptions.- 29. The EUROSEM Model.- 30. Griffith University Erosion System Template (GUEST).- 31. A Continuous Catchment-Scale Erosion Model.- 32. LISEM: a Physically-Based Hydrologic and Soil Erosion Catchment Model.- 33. APEX: a New Tool for Predicting the Effects of Climate and CO2 Changes on Erosion and Water Quality.- 34. A Dynamic Model of Gully Erosion.- 35. Alternative Approaches to Soil Erosion Prediction and Conservation Using Expert Systems and Neural Networks.- Section 6. Model Applications: Actual and Potential.- 36. Soil Erosion Modelling in Hungary.- 37. Definition and Mapping of Desertification Units in Mediterranean Areas Under Rainfed Cereals.- 38. Hydrological and Erosion Processes in the Research Catchments of Vallcebre (Pyrenees).- Section 7. Conclusions.- 39. Modelling Soil Erosion by Water: Some Conclusions.- Appendices.- A. List of Acronyms Used.- B. Participants at 'Global Change: Modelling Soil Erosion by Water'.
TO THE MODEL EVALUATION 1. MODELLING SOIL EROSION BY WATER l 2 John Boardman and David Favis-Mortlock 1 School of Geography and Environmental Change Unit Mansfield Road University of Oxford Oxford OX1 3TB UK 2 Environmental Change Unit University of Oxford 5 South Parks Road Oxford OX1 3UB UK Introduction This volume is the Proceedings of the NATO Advanced Research Workshop 'Global Change: Modelling Soil Erosion by Water', which was held on II-14th September 1995, at the University of Oxford, UK. The meeting was also one of a series organised by the IGBP 1 GCTE Soil Erosion Network, which is a component of GCTE's Land Degradation Task (3.3.2) (Ingram et aI., 1996; Valentin, this volume). One aim of the GCTE Soil Erosion Network is to evaluate the suitability of existing soil erosion models for predicting the possible impacts of global change upon soil erosion. Due to the wide range of erosion models currently, in use or under development, it was decided to evaluate models in the following sequence Favis-Mortlock et al., 1996): • field-scale water erosion models • catchmenr-scale water erosion models • wind erosion models • models with a landscape-scale and larger focus. As part of this strategy, the first stage of the GCTE validation of field-scale erosion models was carried out at the Oxford NATO-ARW. I A list of Acronyms fonns Appendix A.
The movement of sediment and associated pollutants over thelandscape and into water bodies is of increasing concern withrespect to pollution control, prevention of muddy floods andenvironmental protection. In addition, the loss of soil on site hasimplications for declining agricultural productivity, loss ofbiodiversity and decreased amenity and landscape value. The fate ofsediment and the conservation of soil are important issues for landmanagers and decision-makers. In developing appropriate policiesand solutions, managers and researchers are making greater use oferosion models to characterise the processes of erosion and theirinteraction with the landscape. A study of erosion requires one to think in terms ofmicroseconds to understand the mechanics of impact of a singleraindrop on a soil surface, while landscapes form over periods ofthousands of years. These processes operate on scales ofmillimetres for single raindrops to mega-metres for continents.Erosion modelling thus covers quite a lot of ground. This bookintroduces the conceptual and mathematical frameworks used toformulate models of soil erosion and uses case studies to show howmodels are applied to a variety of purposes at a range of spatialand temporal scales. The aim is to provide land managers and otherswith the tools required to select a model appropriate to the typeand scale of erosion problem, to show what users can expect interms of accuracy of model predictions and to provide anappreciation of both the advantages and limitations of models.Problems covered include those arising from agriculture, theconstruction industry, pollution and climatic change and range inscale from farms to small and large catchments. The book will alsobe useful to students and research scientists as an up-to-datereview of the state-of-art of erosion modelling and, through aknowledge of how models are used in practice, in highlighting thegaps in knowledge that need to be filled in order to develop evenbetter models.
“Principles of Soil Management and Conservation” comprehensively reviews the state-of-knowledge on soil erosion and management. It discusses in detail soil conservation topics in relation to soil productivity, environment quality, and agronomic production. It addresses the implications of soil erosion with emphasis on global hotspots and synthesizes available from developed and developing countries. It also critically reviews information on no-till management, organic farming, crop residue management for industrial uses, conservation buffers (e.g., grass buffers, agroforestry systems), and the problem of hypoxia in the Gulf of Mexico and in other regions. This book uniquely addresses the global issues including carbon sequestration, net emissions of CO2, and erosion as a sink or source of C under different scenarios of soil management. It also deliberates the implications of the projected global warming on soil erosion and vice versa. The concern about global food security in relation to soil erosion and strategies for confronting the remaining problems in soil management and conservation are specifically addressed. This volume is suitable for both undergraduate and graduate students interested in understanding the principles of soil conservation and management. The book is also useful for practitioners, extension agents, soil conservationists, and policymakers as an important reference material.
Landscapes are characterized by a wide variation, both spatially and temporally, of tolerance and response to natural processes and anthropogenic stress. These tolerances and responses can be analyzed through individual landscape parameters, such as soils, vegetation, water, etc., or holistically through ecosystem or watershed studies. However, such approaches are both time consuming and costly. Soil erosion and landscape evolution modeling provide a simulation environment in which both the short- and long-term consequences of land-use activities and alternative land use strategies can be compared and evaluated. Such models provide the foundation for the development of land management decision support systems. Landscape Erosion and Evolution Modeling is a state-of-the-art, interdisciplinary volume addressing the broad theme of soil erosion and landscape evolution modeling from different philosophical and technical approaches, ranging from those developed from considerations of first-principle soil/water physics and mechanics to those developed empirically according to sets of behavioral or empirical rules deriving from field observations and measurements. The validation and calibration of models through field studies is also included. This volume will be essential reading for researchers in earth, environmental and ecosystem sciences, hydrology, civil engineering, forestry, soil science, agriculture and climate change studies. In addition, it will have direct relevance to the public and private land management communities.
Provides a unique and comprehensive assessment of soil erosion throughout Europe, an important aspect to control and manage if landscapes are to be sustained for the future. Written in two parts, Soil Erosion in Europe primarily focuses on current issues, area specific soil erosion rates, on and off-site impacts, government responses, soil conservation measures, and soil erosion risk maps. The first part overviews the erosion processes and the problems encountered within each European country, whilst the second section takes a cross-cutting theme approach. Based on an EU-funded project that has been running for four years with erosion scientists from 19 countries Reviews contemporary erosion processes and rates on arable and rangeland in Europe Looks at current issues, such as socio-economic drivers, controlling factors specific to the country and changes in land use
Introduction and history; Rainfall-runoff erosivity factor (R); Soil erodibility factor (K); Slope length and steepness factors (LS); Cover-management factor (C); Support practice factor (P); RUSLE user guide; Coversion to SI metric system; Calculation of EI from recording-raingage records; Estimating random roughness in the field; Parameter values for major agricultural crops and tillage operations.
This book, the only one of its kind on ravine lands, reflects the significant advances made over the past two decades in our understanding of gully erosion, its controlling factors, and various aspects of gully erosion. It also addresses central research gaps and unanswered questions, which include historical studies on gully erosion to better understand the different stages of their formation; appropriate measuring techniques for monitoring or assessing the geological and hydrological parameters and processes involved in gully development; interaction of hydrological and other soil degradation processes; ecology and biodiversity of fragile ravines; impact of climate and environmental changes on soil erosion processes; development of effective and reliable gully erosion models; effective gully prevention and control measures; watershed-based management options; and ravine rehabilitation policies. The present book is a highly timely publication and deals with various aspects of ravine ecology and rehabilitation of degraded lands, particularly with the aid of biological approaches. As such, it offers a valuable guide for all scientists working in the fields of soil conservation / rehabilitation and agroforestry, students, environmentalists, educationists, and policymakers. More importantly, it focuses on the rehabilitation of one of the world’s most degraded and fragile ecosystems, ensuring the livelihoods of resource-poor farmers and landless families living in harsh ecologies that are more vulnerable to climate change.
Accelerated degradation of soils and surface waters produce increasing problems in many parts of the world. Within this context, the book addresses the topic Application of Physically Based Soil Erosion Models in order to present some essential tools for improving land-use strategies and conservation measures. Over the last 20 years, the need for more accurate assessments of soil losses and sediment yields has led to the development of some highly complex, process-based soil erosion models. In 14 papers, specialists from 5 European countries, the USA and Brazil report on practical applications of these models and give insight into the latest developments. This book will help to implement state-of-the-art soil erosion prediction technologies within soil and water conservation planning and assessment. Hence, the book should be of special interest to agricultural and environmental engineers, hydrologists, soil scientists and geoscientists.