Download Free Modelling Radioactivity In The Environment Book in PDF and EPUB Free Download. You can read online Modelling Radioactivity In The Environment and write the review.

Just as an environmental model typically will be composed of a number of linked sub-models, representing physical, chemical or biological processes understood to varying degrees, this volume includes a series of linked chapters exemplifying the fundamental nature of environmental radioactivity models in all compartments of the environment. Why is a book on modelling environmental radioactivity necessary? There are many reasons why such a boook is necessary, perhaps the most important that: - modelling is an often misunderstood and maligned activity and this book can provide, to a broad audience, a greater understanding of modelling power but also some of the limitations. - modellers and experimentalists often do not understand and mistrust each other's work yet they are mutually dependent, in the sense that good experimental science can direct good modelling work and vice-versa; we hope that this book can dispel mistrust and engender improved understanding. - there is an increasing reliance on model results in environmental management, yet there is also often misuse and misrepresentation of these results. This book can help to bridge the gap between unrealistic expectations of model power and the realisation of what is possible, practicable and feasible in modelling of environmental radioactivity; and finally, - modelling tools, capacity and power have increased many-fold in a relatively short period of time. Much of this is due to the much-heralded computer revolution, but much is also due to better science. It is useful to consider what gap if any still remains between what is possible and what is necessary.
This book examines the way that lead enters the biosphere and the subsequent environmental impact. The contributing authors include international experts who provide methods for assessing and characterizing the ecological risk of lead contamination of soil and plants. Information is provided on the consequences for human health as a result of lead pollution. This book reveals that approximately 98% of stable lead in the atmosphere originates from human activities. Lead in Plants and the Environment reports on methods for detecting, measuring, and assessing the concentration of lead in plants. The authors provide a method for the measurement of 210Pb isotopes in plants. This method can be applied extensively in different environmental settings, not only as a way of revealing sources of lead, but also as a way to monitor lead transport in plants and animals that ingest them. The chapters include coverage on the following topics: · Lead bioavailability in the environment and its exposure and effects · Radioanalytical methods for detecting and identifying trace concentrations of lead in the environment · Lead contamination and its dynamics in soil plant systems · Lead pollution monitoring and remediation through terrestrial plants in mesocosm constructed wetlands · A review of phytoremediation of lead This book is a valuable resource to students, academics, researchers, and environmental professionals doing field work on lead contamination throughout the world.
Describes an approach for assessing doses to members of the public as part of an environmental impact analysis of predictive radioactive discharges. This is achieved by using screening models which describe environmental processes in mathematical terms, producing a quantitative result.
- Thema des Bandes ist die Radioaktivität in der Umwelt (Herkunft, Transport, Messung) - einziges Buch auf dem Markt, das sich derart ausführlich nur mit diesem Thema beschäftigt - wendet sich an breitgefächertes Leserspektrum (Studenten, Dozenten, Forscher, Unternehmen, Berater) - Interesse am Einfluß menschlicher Tätigkeit auf die Umwelt nimmt ständig zu
Growing public concern about releases of radiation into the environment has focused attention on the measurement of exposure of people living near nuclear weapons production facilities or in areas affected by accidental releases of radiation. Radiation-Dose Reconstruction for Epidemiologic Uses responds to the need for criteria for dose reconstruction studies, particularly if the doses are to be useful in epidemiology. This book provides specific and practical recommendations for whether, when, and how studies should be conducted, with an emphasis on public participation. Based on the expertise of scientists involved in dozens of dose reconstruction projects, this volume: Provides an overview of the basic requirements and technical aspects of dose reconstruction. Presents lessons to be learned from dose reconstructions after Chernobyl, Three Mile Island, and elsewhere. Explores the potential benefits and limitations of biological markers. Discusses how to establish the "source term"â€"that is, to determine what was released. Explores methods for identifying the environmental pathways by which radiation reaches the body. Offers details on three major categories of dose assessment.
Radioactive sources such as nuclear power installations can pose a great threat to both humans and our environment. How do we measure, model and regulate such threats? Environmental Radioactivity and Emergency Preparedness addresses these topical questions and aims to plug the gap in the lack of comprehensive literature in this field. The book explores how to deal with the threats posed by different radiological sources, including those that are lost or hidden, and the issues posed by the use of such sources. It presents measurement methods and approaches to model and quantify the extent of threat, and also presents strategies for emergency preparedness, such as strategies for first-responders and radiological triage in case an accident should happen. Containing the latest recommendations and procedures from bodies such as the IAEA, this book is an essential reference for both students and academicians studying radiation safety, as well as for radiation protection experts in public bodies or in the industry.
This book, the third in the series Behavior of Radionuclides in the Environment, is dedicated to Fukushima. Major findings from research since 2011 are reviewed concerning the behavior of radionuclides released into the environment due to the Fukushima Dai-ichi Nuclear Power Plant accident, including atmospheric transport and fallout of radionuclides, their fate, and transport in the soil-water environment, behavior in freshwater, coastal and marine environment, transfer in the terrestrial and agricultural environment. Volume III discusses not only radionuclides dynamics in the environment in the short- and mid-term, but also modeling and prediction of long-term time changes. Along with reviews, the book contains original data and results not published previously. It was spearheaded by the authors from the Institute of Environmental Radioactivity at Fukushima University, established two years after the Fukushima accident, with their collaborators from Japan, Russia, and Ukraine. The knowledge emerging from the studies of the environmental behavior of Fukushima-derived radionuclides enables us to move forward in understanding mechanisms of environmental contamination and leads to better modeling and prediction of long-term pollution effects in general.
This book provides extensive and comprehensive information to researchers and academicians who are interested in radionuclide contamination, its sources and environmental impact. It is also useful for graduate and undergraduate students specializing in radioactive-waste disposal and its impact on natural as well as manmade environments. A number of sites are affected by large legacies of waste from the mining and processing of radioactive minerals. Over recent decades, several hundred radioactive isotopes (radioisotopes) of natural elements have been produced artificially, including 90Sr, 137Cs and 131I. Several other anthropogenic radioactive elements have also been produced in large quantities, for example technetium, neptunium, plutonium and americium, although plutonium does occur naturally in trace amounts in uranium ores. The deposition of radionuclides on vegetation and soil, as well as the uptake from polluted aquifers (root uptake or irrigation) are the initial point for their transfer into the terrestrial environment and into food chains. There are two principal deposition processes for the removal of pollutants from the atmosphere: dry deposition is the direct transfer through absorption of gases and particles by natural surfaces, such as vegetation, whereas showery or wet deposition is the transport of a substance from the atmosphere to the ground by snow, hail or rain. Once deposited on any vegetation, radionuclides are removed from plants by the airstre am and rain, either through percolation or by cuticular scratch. The increase in biomass during plant growth does not cause a loss of activity, but it does lead to a decrease in activity concentration due to effective dilution. There is also systemic transport (translocation) of radionuclides within the plant subsequent to foliar uptake, leading the transfer of chemical components to other parts of the plant that have not been contaminated directly.
This Safety Guide provides recommendations and guidance on a general framework for performing prospective radiological impact assessments for facilities and activities, to estimate and control the radiological effects on the public and on the environment. This radiological environmental impact assessment is intended for planned exposure situations as part of the authorization process and, when applicable, as part of a governmental decision making process for facilities and activities. The situations covered in the assessment include both exposures expected to occur in normal operation as well as potential exposures. The assessment of the radiological impacts includes consideration of the risk of radiation effects for humans and for populations of non-human biota. Guidance is provided on the assumptions and input data to be used, the necessary models for environmental transfer and radiation dose assessment and the definition and use of criteria for informing decisions.
Over the past decade significant progress has been achieved in the development of waste characterization and control procedures and equipment as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. -- Publisher's description.