Download Free Modelling Greenland Outlet Glaciers Book in PDF and EPUB Free Download. You can read online Modelling Greenland Outlet Glaciers and write the review.

This updated and expanded version of the second edition explains the physical principles underlying the behaviour of glaciers and ice sheets. The text has been revised in order to keep pace with the extensive developments which have occurred since 1981. A new chapter, of major interest, concentrates on the deformation of subglacial till. The book concludes with a chapter on information regarding past climate and atmospheric composition obtainable from ice cores.
Dynamics of Ice Sheets and Glaciers presents an introduction to the dynamics and thermodynamics of flowing ice masses on Earth. Based on an outline of general continuum mechanics, the different initial-boundary-value problems for the flow of ice sheets, ice shelves, ice caps and glaciers are systematically derived. Special emphasis is put on developing hierarchies of approximations for the different systems, and suitable numerical solution techniques are discussed. A separate chapter is devoted to glacial isostasy. The book is appropriate for graduate courses in glaciology, cryospheric sciences, environmental sciences, geophysics and related fields. Standard undergraduate knowledge of mathematics (calculus, linear algebra) and physics (classical mechanics, thermodynamics) provide a sufficient background for successfully studying the text.
Few scientists doubt the prediction that the antropogenic release of carbon dioxide in the atmosphere will lead to some warming of the earth's climate. So there is good reason to investigate the possible effects of such a warming, in dependence of geographical and social economic setting. Many bodies, governmental or not, have organized meetings and issued reports in which the carbon dioxide problem is defined, reviewed, and possible threats assessed. The rate at which such reports are produced still increases. However, while more and more people are getting involved in the 'carbon dioxide business', the number of investigators working on the basic problems grows, in our view, too slowly. Many fundamental questions are still not answered in a satisfactory way, and the carbon dioxide building rests on a few thin pillars. One such fundamental question concerns the change in sea level associated with a climatic warming of a few degrees. A number of processes can be listed that could all lead to changes of the order of tens of centimeters (e. g. thermal expansion, change in mass balance of glaciers and ice sheets). But the picture of the carbon dioxide problem has frequently be made more dramatic by suggesting that the West Antarctic Ice Sheet is unstable, implying a certain probability of a 5 m higher sea-level stand within a few centuries.
The purpose and scope of this book on theoretical glaciology is outlined in the Introduction. Its aim is to study the theoretical aspects of'ice mechanics' and the 'dynamics of ice masses in a geophysical environment. For the mature reader, the book can serve as an introduction to glaciology. How ever, this is not what I would regard as advisible. Glaciology is an inter disciplinary science in which many special scientific disciplines play their part, from descriptive geography to fairly abstract mathematics. Advance ment will evolve from a merger of two or more branches of scientific specialization. In the last 20 years, several researchers in different fields of glaciology have written books emphasizing the aspects of their specialities and I have listed some which are known to me at the end of the Introduction. When glancing through these books, one recognizes that the mathematical aspects of glaciology are generally glossed over and, to date, there seems to be nothing available which concentrates on these. Therefore, I have written this book in an effort to close the gap and no apologies are offered for the mathematical emphasis. Rather, I believe that this neglect has, to a certain extent, aggra vated progress in the modelling of glaciology problems.
Tide gauges show that global sea level has risen about 7 inches during the 20th century, and recent satellite data show that the rate of sea-level rise is accelerating. As Earth warms, sea levels are rising mainly because ocean water expands as it warms; and water from melting glaciers and ice sheets is flowing into the ocean. Sea-level rise poses enormous risks to the valuable infrastructure, development, and wetlands that line much of the 1,600 mile shoreline of California, Oregon, and Washington. As those states seek to incorporate projections of sea-level rise into coastal planning, they asked the National Research Council to make independent projections of sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account regional factors that affect sea level. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future explains that sea level along the U.S. west coast is affected by a number of factors. These include: climate patterns such as the El Niño, effects from the melting of modern and ancient ice sheets, and geologic processes, such as plate tectonics. Regional projections for California, Oregon, and Washington show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections. However, projections are lower north of Cape Mendocino because the land is being pushed upward as the ocean plate moves under the continental plate along the Cascadia Subduction Zone. However, an earthquake magnitude 8 or larger, which occurs in the region every few hundred to 1,000 years, would cause the land to drop and sea level to suddenly rise.
Measuring, monitoring, and modeling technologies and methods changed the field of glaciology significantly in the 14 years since the publication of the first edition of Fundamentals of Glacier Dynamics. Designed to help readers achieve the basic level of understanding required to describe and model the flow and dynamics of glaciers, this second edition provides a theoretical framework for quantitatively interpreting glacier changes and for developing models of glacier flow. See What’s New in the Second Edition: Streamlined organization focusing on theory, model development, and data interpretation Introductory chapter reviews the most important mathematical tools used throughout the remainder of the book New chapter on fracture mechanics and iceberg calving Consolidated chapter covers applications of the force-budget technique using measurements of surface velocity to locate mechanical controls on glacier flow The latest developments in theory and modeling, including the addition of a discussion of exact time-dependent similarity solutions that can be used for verification of numerical models The book emphasizes developing procedures and presents derivations leading to frequently used equations step by step to allow readers to grasp the mathematical details as well as physical approximations involved without having to consult the original works. As a result, readers will have gained the understanding needed to apply similar techniques to somewhat different applications. Extensively updated with new material and focusing more on presenting the theoretical foundations of glacier flow, the book provides the tools for model validation in the form of analytical steady-state and time-evolving solutions. It provides the necessary background and theoretical foundation for developing more realistic ice-sheet models, which is essential for better integration of data and observations as well as for better model development.
A comprehensive review of interactions between the climates of different ocean basins and their key contributions to global climate variability and change. Providing essential theory and discussing outstanding examples as well as impacts on monsoons, it a useful resource for graduate students and researchers in the atmospheric and ocean sciences.
Surveys atmospheric, oceanic and cryospheric processes, present and past conditions, and changes in polar environments.