Download Free Modelling And Analysis Of Communicating Systems Book in PDF and EPUB Free Download. You can read online Modelling And Analysis Of Communicating Systems and write the review.

Rigorous theory and real-world applications for modeling and analysis of the behavior of complex communicating computer systems. Complex communicating computer systems—computers connected by data networks and in constant communication with their environments—do not always behave as expected. This book introduces behavioral modeling, a rigorous approach to behavioral specification and verification of concurrent and distributed systems. It is among the very few techniques capable of modeling systems interaction at a level of abstraction sufficient for the interaction to be understood and analyzed. Offering both a mathematically grounded theory and real-world applications, the book is suitable for classroom use and as a reference for system architects. The book covers the foundation of behavioral modeling using process algebra, transition systems, abstract data types, and modal logics. Exercises and examples augment the theoretical discussion. The book introduces a modeling language, mCRL2, that enables concise descriptions of even the most intricate distributed algorithms and protocols. Using behavioral axioms and such proof methods as confluence, cones, and foci, readers will learn how to prove such algorithms equal to their specifications. Specifications in mCRL2 can be simulated, visualized, or verified against their requirements. An extensive mCRL2 toolset for mechanically verifying the requirements is freely available online; this toolset has been successfully used to design and analyze industrial software that ranges from healthcare applications to particle accelerators at CERN. Appendixes offer material on equations and notation as well as exercise solutions.
This book offers an alternative view to current postmodern approaches to composition. It takes a critical realist stance to arrive at the “essence” of written communication with the aim of informing a practical application: a computerised writing tutor. Following Robert Franck’s seminal work on modelling, a theoretical model of writing was first formulated, consisting of an architecture of functions which constitute the prerequisites for effective communication. Next, an applied model - a composing algorithm with an input option - was developed, showing composing to be a systemic social process with intra- and extra-systemic variation. The algorithm provided the design template for a writing tutor program which models for the learner both the systemic and the socially situated nature of writing. This book establishes composing as a communicative interaction, and shows the essential dynamism of writing, while offering an exemplar of a systems approach to modelling in the social sciences.
Systems Biology Modelling and Analysis Describes important modelling and computational methods for systems biology research to enable practitioners to select and use the most suitable technique Systems Biology Modelling and Analysis provides an overview of state-of-the-art techniques and introduces related tools and practices to formalize models and automate reasoning for systems biology. The authors present and compare the main formal methods used in systems biology for modelling biological networks, including discussion of their advantages, drawbacks, and main applications. Each chapter includes an intuitive presentation of the specific formalism, a brief history of the formalism and of its applications in systems biology, a formal description of the formalism and its variants, at least one realistic case study, some applications of formal techniques to validate and make deep analysis of models encoded with the formalism, and a discussion on the kind of biological systems for which the formalism is suited, along with concrete ideas on its possible evolution. Edited by a highly qualified expert with significant experience in the field, some of the methods and techniques covered in Systems Biology Modelling and Analysis include: Petri nets, an important tool for studying different aspects of biological systems, ranging from simple signaling pathways to metabolic networks and beyond Pathway Logic, a formal, rule-based system and interactive viewer for developing executable models of cellular processes Boolean networks, a mathematical model which has been widely used for decades in the context of biological regulation networks Answer Set Programming (ASP), which has proven to be a strong logic programming paradigm to deal with the inherent complexity of biological models For systems biologists, biochemists, bioinformaticians, molecular biologists, pharmacologists, and computer scientists, Systems Biology Modelling and Analysis is a comprehensive all-in-one resource to understand and harness the field’s current models and techniques while also preparing for their potential developments in coming years with the help of the author’s expert insight.
This book constitutes the refereed proceedings of the joint International Conferences Formal Modeling and Analysis of Timed Systems, FORMATS 2004, and Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, held in Grenoble, France, in September 2004. The 24 revised full papers presented together with abstracts of 2 invited talks were carefully reviewed and selected from 70 submissions. Among the topics addressed are formal verification, voting systems, formal specification, dependable automation systems, model checking, timed automata, real-time testing, fault-tolerance protocols, fail-safe fault tolerance, real-time scheduling, satisfiability checking, symbolic model checking, stochastic hybrid systems, timed Petri nets, and event recording automata.
Food Systems Modelling emphasizes sustainability, including the impact of agriculture and food production on profits, people and environment, with a particular focus on the ability of humanity to continue producing food in the midst of global environmental change. Sections introduce the purpose of models, the definition of a food system, the importance of disciplinary, interdisciplinary, and transdisciplinary inquiry, cover specific branches of modeling in the sustainability of food systems, and wrestle with the challenge of communicating modeling research and appropriately integrating multiple dimensions of sustainability. This book will be a welcomed reference for food scientists, agricultural scientists, nutritionists, environmental scientists, ecologists, economists, those working in agribusiness and food supply chain management, community and public health, and urban and regional planning, as well as academicians and graduate students interested in the sustainability of food systems. Emphasizes sustainability, including the impact of agriculture and food production on profits Focuses on the ability of humanity to continue producing food in the midst of global environmental change Deciphers what models can teach us about food system sustainability
This textbook provides an introduction to common methods of performance modeling and analysis of communication systems. These methods form the basis of traffic engineering, teletraffic theory, and analytical system dimensioning. The fundamentals of probability theory, stochastic processes, Markov processes, and embedded Markov chains are presented. Basic queueing models are described with applications in communication networks. Advanced methods are presented that have been frequently used in recent practice, especially discrete-time analysis algorithms, or which go beyond classical performance measures such as Quality of Experience or energy efficiency. Recent examples of modern communication networks include Software Defined Networking and the Internet of Things. Throughout the book, illustrative examples are used to provide practical experience in performance modeling and analysis. Target group: The book is aimed at students and scientists in computer science and technical computer science, operations research, electrical engineering and economics.
The increased complexity of embedded systems coupled with quick design cycles to accommodate faster time-to-market requires increased system design productivity that involves both model-based design and tool-supported methodologies. Formal methods are mathematically-based techniques and provide a clean framework in which to express requirements and models of the systems, taking into account discrete, stochastic and continuous (timed or hybrid) parameters with increasingly efficient tools. This book deals with these formal methods applied to communicating embedded systems by presenting the related industrial challenges and the issues of modeling, model-checking, diagnosis and control synthesis, and by describing the main associated automated tools.