Download Free Modeling And Stochastic Analysis Of Contaminant Transport In Soils And Aquifers Book in PDF and EPUB Free Download. You can read online Modeling And Stochastic Analysis Of Contaminant Transport In Soils And Aquifers and write the review.

In many parts of the world, groundwater resources are under increasing threat from growing demands, wasteful use, and contamination. To face the challenge, good planning and management practices are needed. A key to the management of groundwater is the ability to model the movement of fluids and contaminants in the subsurface. The purpose of this book is to construct conceptual and mathematical models that can provide the information required for making decisions associated with the management of groundwater resources, and the remediation of contaminated aquifers. The basic approach of this book is to accurately describe the underlying physics of groundwater flow and solute transport in heterogeneous porous media, starting at the microscopic level, and to rigorously derive their mathematical representation at the macroscopic levels. The well-posed, macroscopic mathematical models are formulated for saturated, single phase flow, as well as for unsaturated and multiphase flow, and for the transport of single and multiple chemical species. Numerical models are presented and computer codes are reviewed, as tools for solving the models. The problem of seawater intrusion into coastal aquifers is examined and modeled. The issues of uncertainty in model input data and output are addressed. The book concludes with a chapter on the management of groundwater resources. Although one of the main objectives of this book is to construct mathematical models, the amount of mathematics required is kept minimal.
Water Engineering Modeling and Mathematic Tools provides an informative resource for practitioners who want to learn more about different techniques and models in water engineering and their practical applications and case studies. The book provides modelling theories in an easy-to-read format verified with on-site models for specific regions and scenarios. Users will find this to be a significant contribution to the development of mathematical tools, experimental techniques, and data-driven models that support modern-day water engineering applications. Civil engineers, industrialists, and water management experts should be familiar with advanced techniques that can be used to improve existing systems in water engineering. This book provides key ideas on recently developed machine learning methods and AI modelling. It will serve as a common platform for practitioners who need to become familiar with the latest developments of computational techniques in water engineering. - Includes firsthand experience about artificial intelligence models, utilizing case studies - Describes biological, physical and chemical techniques for the treatment of surface water, groundwater, sea water and rain/snow - Presents the application of new instruments in water engineering
Proceeding of a symposium on Contaminant transport in groundwater held in Stuttgart, April 1989. Topics covered include: Field methods & data processing; Field studies & tracer experiments; Contaminant chemistry & column experiments; Modelling of chemistry coupled to transport; Dispersion theory & transport in fractured media; Numerical aspects of modelling, parameter identification & optimization; Multiphase flow & transport in saturated soil.
The refereed and edited proceedings of the symposium Schlomo P. Neuman: Recent Advances After 30 Years of Exceptional Contributions to Well Hydraulics, Numerical Modeling, and Field Investigations, which was held in Tucson, Arizona, in October 1998. Among the topics are four decades of inverse problems in hydrogeology, a connected-network paradigm for the alluvial aquifer system, the influence of multi-scale structure in non-ergodic solute transport in heterogeneous porous media, the Gaussian analysis of one-dimensional unsaturated flow in randomly heterogeneous soils, and the type-curve interpretation of transient single-hole pneumatic injection tests in unsaturated fractured tuffs at the Apache Leap Research Site. Annotation copyrighted by Book News Inc., Portland, OR
Water Environment Modeling covers the formulations and applications of mathematical models that simulate water flow and chemical transport in rivers, lakes, groundwater, estuaries, coastal, and ocean waters. These models are used to evaluate the response of water environment to human interventions and serve as useful analytical tools for water pollution control and resource management. Simple and comprehensive modeling techniques and their practical applications are presented with examples and exercises, most of which are derived from actual case studies. In general, simple models can be solved analytically and comprehensive models require numerical solutions. While simple models are usually adopted for preliminary assessment of a particular water environment, comprehensive models are used to provide detailed spatial and temporal variations of pollutants in complex environments. The system-based models in the forms of integral equations are introduced as an alternative modeling approach. This textbook is ideal for advanced undergraduate students and graduate students in civil and environmental engineering and related academic fields. It is also suitable as a reference book for practicing engineers and scientists. Authors: Clark C.K. Liu is Emeritus Professor of the Department of Civil and Environmental Engineering at University of Hawaii and former Environmental Engineering Director of US National Science Foundation. Pengzhi Lin is Professor of State Key Laboratory of Hydraulics and Mountain River Engineering at Sichuan University. He is the author of Numerical Modeling of Water Waves (CRC Press, 2008). Hong Xiao is Professor and Vice Director of Hydroinformatics Institute of the State Key Laboratory of Hydraulics and Mountain River Engineering at Sichuan University.