Download Free Model Predictive Control For Drinkingwater Networks Based On Gaussian Processes Book in PDF and EPUB Free Download. You can read online Model Predictive Control For Drinkingwater Networks Based On Gaussian Processes and write the review.

This monograph introduces the authors’ work on model predictive control system design using extended state space and extended non-minimal state space approaches. It systematically describes model predictive control design for chemical processes, including the basic control algorithms, the extension to predictive functional control, constrained control, closed-loop system analysis, model predictive control optimization-based PID control, genetic algorithm optimization-based model predictive control, and industrial applications. Providing important insights, useful methods and practical algorithms that can be used in chemical process control and optimization, it offers a valuable resource for researchers, scientists and engineers in the field of process system engineering and control engineering.
This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves— and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;• decision-making support for monitoring water balance and distribution network quality in real time, implementing fault detection and diagnosis techniques and using information from hundreds of flow, pressure, and water-quality sensors together with hydraulic and quality-parameter-evolution models to detect and locate leaks in the network, possible breaches in water quality, and failures in sensors and/or actuators;• consumer-demand prediction, based on smart metering techniques, producing detailed analyses and forecasts of consumption patterns, providing a customer communications service, and suggesting economic measures intended to promote more efficient use of water at the household level. Researchers and engineers working with drinking-water networks will find this a vital support in overcoming the problems associated with increased population, environmental sensitivities and regulation, aging infrastructures, energy requirements, and limited water sources.
This book reports on the implementation of evolutionary-game theory in the design of distributed optimization-based controllers. First, it discusses how the classical population-game approach can contribute to and complement the design of optimization-based controllers. It shows how the features of this approach can be exploited to extend their capabilities in the solution of distributed optimization problems, and examines density games in order to consider multiple coupled constraints and preserve the non-centralized information requirements. Furthermore, it establishes a close relationship between the possible interactions among agents in a population with constrained information sharing among different local controllers. It also discusses coalitional games, focusing on the Shapley power index and proposes an alternative method of computing the latter, which reduces computational time, as well as a different way of finding it using distributed communication structures. All the proposed strategies are then tested on various control problems, such as those related to the Barcelona water supply network, multiple continuous stirred tank reactors, various unmanned aerial vehicle systems, and a water distribution system. This thesis, examined at the Universitat Politècnica de Catalunya and Universidad de los Andes in 2017, received the award for best thesis in control from the control group of the Spanish Committee of Automatic Control (CEA) in the same year.
The contents of this book comprise an appropriate background to start working and doing research on mean-field-type control and game theory. To make the exposition and explanation even easier, we first study the deterministic optimal control and differential linear-quadratic games. Then, we progressively add complexity step-by-step and little-by-little to the problem settings until we finally study and analyze mean-field-type control and game problems incorporating several stochastic processes, e.g., Brownian motions, Poisson jumps, and random coefficients. We go beyond the Nash equilibrium, which provides a solution for non- cooperative games, by analyzing other game-theoretical concepts such as the Berge, Stackelberg, adversarial/robust, and co-opetitive equilibria. For the mean-field-type game analysis, we provide several numerical examples using a Matlab-based user-friendly toolbox that is available for the free use to the readers of this book. We present several engineering applications in both continuous and discrete time. Among these applications we find the following: water distribution systems, micro-grid energy storage, stirred tank reactor, mechanism design for evolutionary dynamics, multi-level building evacuation problem, and the COVID-19 propagation control. Julian Barreiro-Gomez Hamidou Tembine With such a demand from engineering audiences, this book is very timely and provides a thorough study of mean-field-type game theory. The strenuous protagonist of this book is to bridge between the theoretical findings and engineering solutions. The book introduces the basics first, and then mathematical frameworks are elaborately explained. The engineering application examples are shown in detail, and the popular learning approaches are also investigated. Those advantageous characteristics will make this book a comprehensive handbook of many engineering fields for many years, and I will buy one when it gets published. Zhu Han
This book constitutes revised selected papers from the 9th International Conference on Critical Information Infrastructures Security, CRITIS 2014, held in Limassol, Cyprus, in October 2014. The 20 full and 19 short papers presented in this volume were carefully reviewed and selected from 74 submissions. They are organized in topical sections named: cyber-physical systems and sensor networks; security of water systems; power and energy system security; security and recovery policies, cyber security; and security tools and protocols.
This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and design; and · applications to bioprocesses, multivehicle systems or energy management. The various contributions cover a subject spectrum including inverse optimality and more modern decentralized and cooperative formulations of receding-horizon optimal control. Readers will find fourteen chapters dedicated to optimization-based tools for robustness analysis, and decision-making in relation to feedback mechanisms—fault detection, for example—and three chapters putting forward applications where the model-based optimization brings a novel perspective. Developments in Model-Based Optimization and Control is a selection of contributions expanded and updated from the Optimisation-based Control and Estimation workshops held in November 2013 and November 2014. It forms a useful resource for academic researchers and graduate students interested in the state of the art in predictive control. Control engineers working in model-based optimization and control, particularly in its bioprocess applications will also find this collection instructive.
This book highlights the latest achievements concerning the theory, methods and practice of fault diagnostics, fault tolerant systems and cyber safety. When considering the diagnostics of industrial processes and systems, increasingly important safety issues cannot be ignored. In this context, diagnostics plays a crucial role as a primary measure of the improvement of the overall system safety integrity level. Obtaining the desired diagnostic coverage or providing an appropriate level of inviolability of the integrity of a system is now practically inconceivable without the use of fault detection and isolation methods. Given the breadth and depth of its coverage, the book will be of interest to researchers faced with the challenge of designing technical and medical diagnosis systems, as well as junior researchers and students in the fields of automatic control, robotics, computer science and artificial intelligence.
This book provides comprehensive analysis of a number of groundwater issues, ranging from flow to pollution problems. Several scenarios are considered throughout, including flow in leaky, unconfined, and confined geological formations, crossover flow behavior from confined to confined, to semi-confined to unconfined and groundwater pollution in dual media. Several mathematical concepts are employed to include into the mathematical models’ complexities of the geological formation, including classical differential operators, fractional derivatives and integral operators, fractal mapping, randomness, piecewise differential, and integral operators. It suggests several new and modified models to better predict anomalous behaviours of the flow and movement of pollution within complex geological formations. Numerous mathematical techniques are employed to ensure that all suggested models are well-suited, and different techniques including analytical methods and numerical methods are used to derive exact and numerical solutions of different groundwater models. Features: Includes modified numerical and analytical methods for solving new and modified models for groundwater flow and transport Presents new flow and transform models for groundwater transport in complex geological formations Examines fractal and crossover behaviors and their mathematical formulations Mathematical Analysis of Groundwater Flow Models serves as a valuable resource for graduate and PhD students as well as researchers working within the field of groundwater modeling.
This book aims at stimulating discussion between researchers working on state of the art approaches for operational control and design of transport of water on the one hand and researchers working on state of the art approaches for transport over water on the other hand. The main contribution of the book as a whole is to present novel perspectives ultimately leading to the management of an envisioned unified management framework taking the recent advances from both worlds as a baseline. The book is intended to be a reference for control-oriented engineers who manage water systems with either or both purposes in mind (transport of water, transport of goods over water). It highlights the possible twofold nature of water projects, where water either acts as primary object of study or as a means. The book is dedicated to comparing and relating to one another different strategies for (operational) management and control of different but strongly related systems in the framework of the water. In that sense, the book presents different approaches treating both the transport of water and transport over water. It compares the different approaches within the same field, highlighting their distinguishing features and advantages according to selected qualitative indices, and demonstrates the interaction and cross-relations between both fields. It will also help to determine the gaps and common points for both fields towards the design of such a unifying framework, which is lacking in the literature. Additionally, the book looks at case studies where the design of modeling/control strategies of either transport of water or transport over water have been proposed, discussed or simulated.
A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.