Download Free Mixed Integer Second Order Cone Programming Book in PDF and EPUB Free Download. You can read online Mixed Integer Second Order Cone Programming and write the review.

Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.
In this thesis, we study mixed-integer convex optimization, or mixed-integer convex programming (MICP), the class of optimization problems where one seeks to minimize a convex objective function subject to convex constraints and integrality restrictions on a subset of the variables. We focus on two broad and complementary questions on MICP. The first question we address is, "what are efficient methods for solving MICP problems?" The methodology we develop is based on outer approximation, which allows us, for example, to reduce MICP to a sequence of mixed-integer linear programming (MILP) problems. By viewing MICP from the conic perspective of modern convex optimization as defined by Ben-Tal and Nemirovski, we obtain significant computational advances over the state of the art, e.g., by automating extended formulations by using disciplined convex programming. We develop the first finite-time outer approximation methods for problems in general mixed-integer conic form (which includes mixed-integer second-order-cone programming and mixed-integer semidefinite programming) and implement them in an open-source solver, Pajarito, obtaining competitive performance with the state of the art. The second question we address is, "which nonconvex constraints can be modeled with MICP?" This question is important for understanding both the modeling power gained in generalizing from MILP to MICP and the potential applicability of MICP to nonconvex optimization problems that may not be naturally represented with integer variables. Among our contributions, we completely characterize the case where the number of integer assignments is bounded (e.g., mixed-binary), and to address the more general case we develop the concept of "rationally unbounded" convex sets. We show that under this natural restriction, the projections of MICP feasible sets are well behaved and can be completely characterized in some settings.
Abstract : This work proposes a Mixed Integer Second Order Cone Programming (MISOCP) model for Distribution Optimal Power Flow (DOPF) by incorporating conic model of voltage control through a Load Tap Changer (LTC) as discrete control. A novel algorithm, Sequential Bound Tightening Algorithm (SBTA), is also developed to solve the proposed model. The algorithm improves accuracy and the formulation along with the algorithm permits computational tractability on practical-sized systems. The proposed model and the algorithm are tested and benchmarked against the results from a standard Mixed Integer Nonlinear Programming (MINLP) model. The results show that the model is sufficiently accurate and scales well on larger systems. Additionally, a Mixed Integer Conic Reformulation of the UC problem is also proposed whose computational efficiency is further enhanced by incorporating convex hull of difficult inter-temporal constraints. The results show that the proposed model outperforms MINLP by a large factor and it even outperforms commonly used MILP model on larger systems.
Mixed Integer Second Order Cone Optimization (MISOCO) problems allow practitioners to mathematically describe a wide variety of real world engineering problems including supply chain, finance, and networks design. A MISOCO problem minimizes a linear function over the set of solutions of a system of linear equations and the Cartesian product of second order cones of various dimensions, where a subset of the variables is constrained to be integer. This thesis presents a technique to derive inequalities that help to obtain a tighter mathematical description of the feasible set of a MISOCO problem. This improved description of the problem usually leads to accelerate the process of finding its optimal solution. In this work we extend the ideas of disjunctive programming, originally developed for mixed integer linear optimization, to the case of MISOCO problems. The extension presented here results in the derivation of a novel methodology that we call \emph{disjunctive conic cuts} for MISOCO problems. The analysis developed in this thesis is separated in three parts. In the first part, we introduce the formal definition of disjunctive conic cuts. Additionally, we show that under some mild assumptions there is a necessary and sufficient condition that helps to identify a disjunctive conic cut for a given convex set. The main appeal of this condition is that it can be easily verified in the case of MISOCO problems. In the second part, we study the geometry of sets defined by a single quadratic inequality. We show that for some of these sets it is possible to derive a close form to build a disjunctive conic cut. In the third part, we show that the feasible set of a MISOCO problem with a single cone can be characterized using sets that are defined by a single quadratic inequality. Then, we present the results that provide the criteria for the derivation of disjunctive conic cuts for MISOCO problems. Preliminary numerical experiments with our disjunctive conic cuts used in a branch-and-cut framework provide encouraging results where this novel methodology helped to solve MISOCO problems more efficiently. We close our discussion in this thesis providing some highlights about the questions that we consider worth pursuing for future research.
This book constitutes the thoroughly refereed post-conference proceedings of the Second International Symposium on Combinatorial Optimization, ISCO 2012, held in Athens, Greece, in April 2012. The 37 revised full papers presented together with 4 invited talks were carefully reviewed and selected from 94 regular and 30 short submissions. They present original research on all aspects of combinatorial optimization, ranging from mathematical foundations and theory of algorithms to computational studies and practical applications.