Download Free Miscellanea Mathematica Book in PDF and EPUB Free Download. You can read online Miscellanea Mathematica and write the review.

Provides reader with working knowledge of Mathematica and key aspects of Mathematica symbolic capabilities, the real heart of Mathematica and the ingredient of the Mathematica software system that makes it so unique and powerful Clear organization, complete topic coverage, and an accessible writing style for both novices and experts Website for book with additional materials: http://www/MathematicaGuideBooks.org Accompanying DVD containing all materials as an electronic book with complete, executable Mathematica 5.1 compatible code and programs, rendered color graphics, and animations
Mathematics has a certain mystique, for it is pure and ex- act, yet demands remarkable creativity. This reputation is reinforced by its characteristic abstraction and its own in- dividual language, which often disguise its origins in and connections with the physical world. Publishing mathematics, therefore, requires special effort and talent. Heinz G|tze,who has dedicated his life to scientific pu- blishing, took up this challenge with his typical enthusi- asm. This Festschrift celebrates his invaluable contribu- tions to the mathematical community, many of whose leading members he counts among his personal friends. The articles, written by mathematicians from around the world and coming from diverse fields, portray the important role of mathematics in our culture. Here, the reflections of important mathematicians, often focused on the history of mathematics, are collected, in recognition of Heinz G|tze's life-longsupport of mathematics.
First of two volumes tracing the development of series and products. Second edition adds extensive material from original works.
For several centuries, analysis has been one of the most prestigious and important subjects in mathematics. The present book sets off by tracing the evolution of mathematical analysis, and then endeavours to understand the developments of main trends, problems, and conjectures. It features chapters on general topology, 'classical' integration and measure theory, functional analysis, harmonic analysis and Lie groups, theory of functions and analytic geometry, differential and partial differential equations, topological and differential geometry. The ubiquitous presence of analysis also requires the consideration of related topics such as probability theory or algebraic geometry. Each chapter features a comprehensive first part on developments during the period 1900-1950, and then provides outlooks on representative achievements during the later part of the century. The book provides many original quotations from outstanding mathematicians as well as an extensive bibliography of the seminal publications. It will be an interesting and useful reference work for graduate students, lecturers, and all professional mathematicians and other scientists with an interest in the history of mathematics.
This is the first volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible to even advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 treats more recent work, including deBranges' solution of Bieberbach's conjecture, and requires more advanced mathematical knowledge.
This is the second volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible even to advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 examines more recent results, including deBranges' resolution of Bieberbach's conjecture and Nevanlinna's theory of meromorphic functions.