Download Free Minimum Error Entropy Classification Book in PDF and EPUB Free Download. You can read online Minimum Error Entropy Classification and write the review.

This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
This book provides several efficient Kalman filters (linear or nonlinear) under information theoretic criteria. They achieve excellent performance in complicated non-Gaussian noises with low computation complexity and have great practical application potential. The book combines all these perspectives and results in a single resource for students and practitioners in relevant application fields. Each chapter starts with a brief review of fundamentals, presents the material focused on the most important properties and evaluates comparatively the models discussing free parameters and their effect on the results. Proofs are provided at the end of each chapter. The book is geared to senior undergraduates with a basic understanding of linear algebra, signal processing and statistics, as well as graduate students or practitioners with experience in Kalman filtering.
This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.
This book analyzes the impact of scientific computing in science and society over the coming decades. It presents advanced methods that can provide new possibilities to solve scientific problems and study important phenomena in society. The chapters cover Scientific computing as the third paradigm of science as well as the impact of scientific computing on natural sciences, environmental science, economics, social science, humanistic science, medicine, and engineering. Moreover, the book investigates scientific computing in high performance computing, quantum computing, and artificial intelligence environment and what it will be like in the 2030s and 2040s.
This book shows the potential of entropy and information theory in forecasting, including both theoretical developments and empirical applications. The contents cover a great diversity of topics, such as the aggregation and combination of individual forecasts, the comparison of forecasting performance, and the debate concerning the tradeoff between complexity and accuracy. Analyses of forecasting uncertainty, robustness, and inconsistency are also included, as are proposals for new forecasting approaches. The proposed methods encompass a variety of time series techniques (e.g., ARIMA, VAR, state space models) as well as econometric methods and machine learning algorithms. The empirical contents include both simulated experiments and real-world applications focusing on GDP, M4-Competition series, confidence and industrial trend surveys, and stock exchange composite indices, among others. In summary, this collection provides an engaging insight into entropy applications for forecasting, offering an interesting overview of the current situation and suggesting possibilities for further research in this field.
The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. Large-scale projects were recently launched with the aim of providing infrastructure for brain simulations. These projects will increase the need for a precise understanding of brain structure, e.g., through statistical analysis and models. From articles in this Research Topic, we identify three main themes that clearly illustrate how new quantitative approaches are helping advance our understanding of neural structure and function. First, new approaches to reconstruct neurons and circuits from empirical data are aiding neuroanatomical mapping. Second, methods are introduced to improve understanding of the underlying principles of organization. Third, by combining existing knowledge from lower levels of organization, models can be used to make testable predictions about a higher-level organization where knowledge is absent or poor. This latter approach is useful for examining statistical properties of specific network connectivity when current experimental methods have not yet been able to fully reconstruct whole circuits of more than a few hundred neurons.
This book gathers a selection of peer-reviewed papers presented at the 4th Big Data Analytics for Cyber-Physical System in Smart City (BDCPS 2022) conference, held in Bangkok, Thailand, on December 16–17. The contributions, prepared by an international team of scientists and engineers, cover the latest advances and challenges made in the field of big data analytics methods and approaches for the data-driven co-design of communication, computing, and control for smart cities. Given its scope, it offers a valuable resource for all researchers and professionals interested in big data, smart cities, and cyber-physical systems.
Artificial Intelligence Tools: Decision Support Systems in Condition Monitoring and Diagnosis discusses various white- and black-box approaches to fault diagnosis in condition monitoring (CM). This indispensable resource:Addresses nearest-neighbor-based, clustering-based, statistical, and information theory-based techniquesConsiders the merits of e
This book is the first cohesive treatment of ITL algorithms to adapt linear or nonlinear learning machines both in supervised and unsupervised paradigms. It compares the performance of ITL algorithms with the second order counterparts in many applications.