Download Free Minimal Coverage Of A Switching Function By Its Prime Implicants Book in PDF and EPUB Free Download. You can read online Minimal Coverage Of A Switching Function By Its Prime Implicants and write the review.

Understand the structure, behavior, and limitations of logic machines with this thoroughly updated third edition. Many new topics are included, such as CMOS gates, logic synthesis, logic design for emerging nanotechnologies, digital system testing, and asynchronous circuit design, to bring students up-to-speed with modern developments. The intuitive examples and minimal formalism of the previous edition are retained, giving students a text that is logical and easy to follow, yet rigorous. Kohavi and Jha begin with the basics, and then cover combinational logic design and testing, before moving on to more advanced topics in finite-state machine design and testing. Theory is made easier to understand with 200 illustrative examples, and students can test their understanding with over 350 end-of-chapter review questions.
Modern Digital Design and Switching Theory is an important text that focuses on promoting an understanding of digital logic and the computer programs used in the minimization of logic expressions. Several computer approaches are explained at an elementary level, including the Quine-McCluskey method as applied to single and multiple output functions, the Shannon expansion approach to multilevel logic, the Directed Search Algorithm, and the method of Consensus. Chapters 9 and 10 offer an introduction to current research in field programmable devices and multilevel logic synthesis. Chapter 9 covers more advanced topics in programmed logic devices, including techniques for input decoding and Field-Programmable Gate Arrays (FPGAs). Chapter 10 includes a discussion of boolean division, kernels and factoring, boolean tree structures, rectangle covering, binary decision diagrams, and if-then-else operators. Computer algorithms covered in these two chapters include weak division, iterative weak division, and kernel extraction by tabular methods and by rectangle covering theory. Modern Digital Design and Switching Theory is an excellent textbook for electrical and computer engineering students, in addition to a worthwhile reference for professionals working with integrated circuits.
Switching Theory and Logic Design is for a first-level introductory course on digital logic design. This book illustrates the usefulness of switching theory and its applications, with examples to acquaint the student with the necessary background. This book has been designed as a prerequisite to many other courses like Digital Integrated Circuits, Computer Organisation, Digital Instrumentation, Digital Control, Digital Communications and Hardware Description Languages.
Electrical Science Series: Recent Developments in Switching Theory covers the progress in the study of the switching theory. The book discusses the simplified proof of Post's theorem on completeness of logic primitives; the role of feedback in combinational switching circuits; and the systematic procedure for the design of Lupanov decoding networks. The text also describes the classical results on counting theorems and their application to the classification of switching functions under different notions of equivalence, including linear and affine equivalences. The development of abstract harmonic analysis of combinational switching functions; the theory of universal logic modules, methods of their construction, and upper bounds on the input terminals; and cellular logic are also considered. The book further tackles the systematic techniques for the realization of multi-output logic function by means of multirail cellular cascades; the programmable cellular logic; and the logical design of programmable arrays. Electrical engineers, electronics engineers, computer professionals, and student taking related courses will find the book invaluable.
The 2nd edition has been thoroughly revised and is intended as a wakeup call in the stagnant and dormant field of switching algebra and logic circuit design. It presents the material in a concise but thorough way. The topics selected are an in-depth presentation of switching algebra, a theory of memory circuits (sometimes called flop flops), a new approach to asynchronous circuits, and a newly added part presenting a unique programming technique (or language) for programmable logic controllers (PLCs). Be ready for the unorthodox and controversial.
This invaluable second volume of a two-volume set is filled with details about the integrated circuit design for space applications. Various considerations for the selection and application of electronic components for designing spacecraft are discussed. The basic constructions of submicron transistors and schottky diodes during the technological process of production are explored. This book provides details on the energy consumption minimization methods for microelectronic devices. Specific topics include: Features and physical mechanisms of the effect of space radiation on all the main classes of microcircuits, including peculiarities of radiation impact on submicron integrated circuits;Special design, technology, and schematic methods of increasing the resistance to various types of space radiation;Recommendations for choosing research equipment and methods for irradiating various samples;Microcircuit designers on the composition of test elements for the study of the effect of radiation;Microprocessors, circuit boards, logic microcircuits, digital, analog, digital–analog microcircuits manufactured in various technologies (bipolar, CMOS, BiCMOS, SOI);Problems involved with designing high speed microelectronic devices and systems based on SOS-and SOI-structures;System-on-chip and system-in-package and methods for rejection of silicon microcircuits with hidden defects during mass production.
Decision diagram (DD) techniques are very popular in the electronic design automation (EDA) of integrated circuits, and for good reason. They can accurately simulate logic design, can show where to make reductions in complexity, and can be easily modified to model different scenarios. Presenting DD techniques from an applied perspective, Decision Diagram Techniques for Micro- and Nanoelectronic Design Handbook provides a comprehensive, up-to-date collection of DD techniques. Experts with more than forty years of combined experience in both industrial and academic settings demonstrate how to apply the techniques to full advantage with more than 400 examples and illustrations. Beginning with the fundamental theory, data structures, and logic underlying DD techniques, they explore a breadth of topics from arithmetic and word-level representations to spectral techniques and event-driven analysis. The book also includes abundant references to more detailed information and additional applications. Decision Diagram Techniques for Micro- and Nanoelectronic Design Handbook collects the theory, methods, and practical knowledge necessary to design more advanced circuits and places it at your fingertips in a single, concise reference.
Comprehensive and self contained, this tutorial covers the design of a plethora of combinational and sequential logic circuits using conventional logic design and Verilog HDL. Number systems and number representations are presented along with various binary codes. Several advanced topics are covered, including functional decomposition and iterative networks. A variety of examples are provided for combinational and sequential logic, computer arithmetic, and advanced topics such as Hamming code error correction. Constructs supported by Verilog are described in detail. All designs are continued to completion. Each chapter includes numerous design issues of varying complexity to be resolved by the reader.