Download Free Mineral Resource Estimation Book in PDF and EPUB Free Download. You can read online Mineral Resource Estimation and write the review.

Mineral resource estimation has changed considerably in the past 25 years: geostatistical techniques have become commonplace and continue to evolve; computational horsepower has revolutionized all facets of numerical modeling; mining and processing operations are often larger; and uncertainty quantification is becoming standard practice. Recent books focus on historical methods or details of geostatistical theory. So there is a growing need to collect and synthesize the practice of modern mineral resource estimation into a book for undergraduate students, beginning graduate students, and young geologists and engineers. It is especially fruitful that this book is written by authors with years of relevant experience performing mineral resource estimation and with years of relevant teaching experience. This comprehensive textbook and reference fills this need.
Applied Mineral Inventory Estimation presents a comprehensive applied approach to the estimation of mineral resources/reserves with particular emphasis on the geological basis of such estimations, the need for and maintenance of a high quality assay data base, the practical use of comprehensive exploratory data evaluation, and the importance of a comprehensive geostatistical approach to the estimation methodology. Practical problems and real data are used throughout as illustrations. Each chapter ends with a summary of practical concerns, a number of exercises and a short list of references for supplementary study. This textbook is suitable for any university or mining school that offers senior undergraduate and graduate student courses on mineral resource/reserve estimation.
This comprehensive textbook covers all major topics related to the utilization of mineral resources for human activities. It begins with general concepts like definitions of mineral resources, mineral resources and humans, recycling mineral resources, distribution of minerals resources across Earth, and international standards in mining, among others. Then it turns to a classification of mineral resources, covering the main types from a geological standpoint. The exploration of mineral resources is also treated, including geophysical methods of exploration, borehole geophysical logging, geochemical methods, drilling methods, and mineral deposit models in exploration. Further, the book addresses the evaluation of mineral resources, from sampling techniques to the economic evaluation of mining projects (i.e. types and density of sampling, mean grade definition and calculation, Sichel’s estimator, evaluation methods – classical and geostatistical, economic evaluation – NPV, IRR, and PP, estimation of risk, and software for evaluating mineral resources). It subsequently describes key mineral resource exploitation methods (open pit and underground mining) and the mineral processing required to obtain saleable products (crushing, grinding, sizing, ore separation, and concentrate dewatering, also with some text devoted to tailings dams). Lastly, the book discusses the environmental impact of mining, covering all the aspects of this very important topic, from the description of diverse impacts to the environmental impact assessment (EIA), which is essential in modern mining projects.
"Copper, zinc, gold and silver mineralizations exist on the deep ocean floor, at great depths, on the Mid-Atlantic Ridge between Jan Mayen and Spitsbergen. None of these mineralizations within Norwegian jurisdiction have been thoroughly investigated yet, but they are likely to contain significant amounts of minerals and metals crucial to society and the 'Green Shift'. Should these mineralizations, which contain minerals and metals that you and I use every day, be developed and mined? The question is premature: we need to know more before we can answer it. We need to know more about the formation, location and characteristics of these potential deposits, as well as the environmental, social and financial consequences of potential extraction. We need to evaluate mining alternatives and how to process the extracted ore. How should we answer this question? The ultimate decisions will be determined politically, and knowledge will be the defining factor. Knowledge gained from proper mineral resource management. Quantifying the Unknown sets out to estimate the amount of minerals and metals on the deep ocean floor along the Mid-Atlantic Ridge, in particular, copper, zinc, gold and silver contained in so-called 'seafloor massive sulphide deposits'. These deposits are modern analogues of those mined worldwide on land today. The method used to quantify the amounts of these resources is known as 'play analysis'. It shares aspects of methodologies used on land for similar purposes and has been employed extensively to assess untapped petroleum resources on the Norwegian Continental Shelf. Play analysis enables a quantification of the potential as well as associated uncertainty. The potential is large, but the uncertainty is also significant. Whether and how this potential is realized remains to be seen." This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.
Essentials of Mineral Exploration and Evaluation offers a thorough overview of methods used in mineral exploration campaigns, evaluation, reporting and economic assessment processes. Fully illustrated to cover the state-of-the-art exploration techniques and evaluation of mineral assets being practiced globally, this up-to-date reference offers balanced coverage of the latest knowledge and current global trends in successful mineral exploration and evaluation. From mineral deposits, to remote sensing, to sampling and analysis, Essentials of Mineral Exploration and Evaluation offers an extensive look at this rapidly changing field. - Covers the complete spectrum of all aspects of ore deposits and mining them, providing a "one-stop shop" for experts and students - Presents the most up-to-date information on developments and methods in all areas of mineral exploration - Includes chapters on application of GIS, statistics, and geostatistics in mineral exploration and evaluation - Includes case studies to enhance practical application of concepts
Although aspects of mineral deposit evaluation advantages and disadvantages of each technique are covered in such texts as McKinstry (1948), so that a judgement can be made as to their Peters (1978), Reedman (1979) and Barnes applicability to a particular deposit and the min (1980), no widely available in-depth treatment of ing method proposed or used. Too often, a lack the subject has been presented. It is thus the of this expertise results in the ore-reserve calcula intention of the present book to produce a text tion being undertaken at head-office or, indeed, by the survey department on the mine, and being which is suitable for both undergraduate and treated as a 'number crunching' or geometric postgraduate students of mining geology and exercise divorced from geology. It is essential mining engineering and which, at the same time, that mine ore-reserves are calculated at the mine is of use to those already following a professional by those geologists who are most closely associ career in the mining industry. An attempt has ated with the local geology and who are thus best been made to present the material in such a way able to influence and/or constrain the calculation.
Mineral Exploration: Principles and Applications, Second Edition, presents an interdisciplinary approach on the full scope of mineral exploration. Everything from grass root discovery, objective base sequential exploration, mining, beneficiation, extraction, economic evaluation, policies and acts, rules and regulations, sustainability, and environmental impacts is covered. Each topic is presented using theoretical approaches that are followed by specific applications that can be used in the field. This new edition features updated references, changes to rules and regulations, and new sections on oil and gas exploration and classification, air-core drilling, and smelting and refining techniques. This book is a key resource for both academics and professionals, offering both practical and applied knowledge in mineral exploration. Offers important updates to the previous edition, including sections on the cyclical nature of mineral industry, exploration for oil and gas, CHIM-electro-geochemical survey, air-core drilling, classification of oil and gas resources, smelting, and refining technologies Presents global case studies that allow readers to quickly apply exploration concepts to real-world scenarios Includes 385 illustrations and photographs to aid the reader in understanding key procedures and applications
Developments in Geomathematics, 2: Geostatistical Ore Reserve Estimation focuses on the methodologies, processes, and principles involved in geostatistical ore reserve estimation, including the use of variogram, sampling, theoretical models, and variances and covariances. The publication first takes a look at elementary statistical theory and applications; contribution of distributions to mineral reserves problems; and evaluation of methods used in ore reserve calculations. Concerns cover estimation problems during a mine life, origin and credentials of geostatistics, precision of a sampling campaign and prediction of the effect of further sampling, exercises on grade-tonnage curves, theoretical models of distributions, and computational remarks on variances and covariances. The text then examines variogram and the practice of variogram modeling. Discussions focus on solving problems in one dimension, linear combinations and average values, theoretical models of isotropic variograms, the variogram as a geological features descriptor, and the variogram as the fundamental function in error computations. The manuscript ponders on statistical problems in sample preparation, orebody modeling, grade-tonnage curves, ore-waste selection, and planning problems, the practice of kriging, and the effective computation of block variances. The text is a valuable source of data for researchers interested in geostatistical ore reserve estimation.