Download Free Middleware Solutions For The Internet Of Things Book in PDF and EPUB Free Download. You can read online Middleware Solutions For The Internet Of Things and write the review.

After a brief introduction and contextualization on the Internet of Things (IoT) and Web of Things (WoT) paradigms, this timely new book describes one of the first research initiatives aimed at tackling the several challenges involved in building a middleware-layer infrastructure capable of realizing the WoT vision: the SmartSensor infrastructure. It is based on current standardization efforts and designed to manage a specific type of physical devices, those organized to shape a Wireless Sensor Network (WSN), where sensors work collaboratively, extracting data and transmitting it to external networks to be further analysed and processed. Middleware Solutions for the Internet of Things describes this infrastructure and its RESTful-based programming model that allows developers create applications without having specific knowledge about physical devices or networking environments. It is also shown, step by step, how to create a Web Mashup application using SmartSensor.
The proliferation of powerful but cheap devices, together with the availability of a plethora of wireless technologies, has pushed for the spread of the Wireless Internet of Things (WIoT), which is typically much more heterogeneous, dynamic, and general-purpose if compared with the traditional IoT. The WIoT is characterized by the dynamic interaction of traditional infrastructure-side devices, e.g., sensors and actuators, provided by municipalities in Smart City infrastructures, and other portable and more opportunistic ones, such as mobile smartphones, opportunistically integrated to dynamically extend and enhance the WIoT environment. A key enabler of this vision is the advancement of software and middleware technologies in various mobile-related sectors, ranging from the effective synergic management of wireless communications to mobility/adaptivity support in operating systems and differentiated integration and management of devices with heterogeneous capabilities in middleware, from horizontal support to crowdsourcing in different application domains to dynamic offloading to cloud resources, only to mention a few. The book presents state-of-the-art contributions in the articulated WIoT area by providing novel insights about the development and adoption of middleware solutions to enable the WIoT vision in a wide spectrum of heterogeneous scenarios, ranging from industrial environments to educational devices. The presented solutions provide readers with differentiated point of views, by demonstrating how the WIoT vision can be applied to several aspects of our daily life in a pervasive manner.
This book constitutes the refereed proceedings of the Third International Conference on Wireless, Mobile Networks, WiMo 2011, and of The Third International Conference on Computer Networks and Communications, CoNeCo 2011, held in Ankara, Turkey, in June 2011. The 40 revised full papers presented were carefully reviewed and selected from 202 submissions.
The Internet of Things (IoT) usually refers to a world-wide network of interconnected heterogeneous objects (sensors, actuators, smart devices, smart objects, RFID, embedded computers, etc) uniquely addressable, based on standard communication protocols. Beyond such a definition, it is emerging a new definition of IoT seen as a loosely coupled, decentralized system of cooperating smart objects (SOs). A SO is an autonomous, physical digital object augmented with sensing/actuating, processing, storing, and networking capabilities. SOs are able to sense/actuate, store, and interpret information created within themselves and around the neighbouring external world where they are situated, act on their own, cooperate with each other, and exchange information with other kinds of electronic devices and human users. However, such SO-oriented IoT raises many in-the-small and in-the-large issues involving SO programming, IoT system architecture/middleware and methods/methodologies for the development of SO-based applications. This Book will specifically focus on exploring recent advances in architectures, algorithms, and applications for an Internet of Things based on Smart Objects. Topics appropriate for this Book include, but are not necessarily limited to: - Methods for SO development - IoT Networking - Middleware for SOs - Data Management for SOs - Service-oriented SOs - Agent-oriented SOs - Applications of SOs in Smart Environments: Smart Cities, Smart Health, Smart Buildings, etc. Advanced IoT Projects.
Middleware refers to the intermediate software layer that bridges the gap between the heterogeneous hardware platforms and the backend applications requirements. It allows providing common services and programming abstractions and hiding the low-level management of the connected hardware. With the recent advances in distributed systems and enabling technologies, such as RFID, WSNs, IoT, IoE, cloud computing, context-aware pervasive computing, ubiquitous computing, etc., middleware design and development has become a necessity, taking increasing importance. This book provides a comprehensive overview of the different design patterns and reference models used in middleware architectures in general, followed by a description of specific middleware architectures dedicated to the use of the different emerging technologies, such as IoT, cloud computing, IEEE 802.11, etc. This book intends therefore to bring together in one place up-to-date contributions and remaining challenges in this fast-moving research area for the benefit of middleware systems’ designers and applications developers.
This book reports on the latest advances in the modeling, analysis and efficient management of information in Internet of Things (IoT) applications in the context of 5G access technologies. It presents cutting-edge applications made possible by the implementation of femtocell networks and millimeter wave communications solutions, examining them from the perspective of the universally and constantly connected IoT. Moreover, it describes novel architectural approaches to the IoT and presents the new framework possibilities offered by 5G mobile networks, including middleware requirements, node-centrality and the location of extensive functionalities at the edge. By providing researchers and professionals with a timely snapshot of emerging mobile communication systems, and highlighting the main pitfalls and potential solutions, the book fills an important gap in the literature and will foster the further developments of 5G hosting IoT devices.
This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: IntroductionDigitising industry and IoT as key enabler in the new era of Digital EconomyIoT Strategic Research and Innovation Agenda IoT in the digital industrial context: Digital Single MarketIntegration of heterogeneous systems and bridging the virtual, digital and physical worldsFederated IoT platforms and interoperabilityEvolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces. Innovation through IoT ecosystemsTrust-based IoT end-to-end security, privacy framework User acceptance, societal, ethical aspects and legal issuesInternet of Things Applications
Web browsing would not be what it is today without the use of Service-Oriented Architecture (SOA). Although much has been written about SOA methodology, this emerging platform is continuously under development. Exploring Enterprise Service Bus in the Service-Oriented Architecture Paradigm is a detailed reference source that examines current aspects and research methodologies that enable enterprise service bus to unify and connect services efficiently on a common platform. Featuring relevant topics such as SOA reference architecture, grid computing applications, complex event computing, and java business integration, this is an ideal resource for all practitioners, academicians, graduate students, and researchers interested in the discoveries on the relationship that Service-Oriented architecture and enterprise service bus share.
This book constitutes the thoroughly refereed post-conference proceedings of the International Workshop on Interoperability and Open-Source Solutions for the Internet of Things, FP7 OpenIot Project, held in Conjunction with SoftCOM 2014, in Split, Croatia, in September 2014. The 11 revised full papers presented together with the extended abstracts of 2 keynote talks were carefully reviewed and selected from numerous submissions during two rounds of reviewing and improvement. The papers are organized in topical sections on OpenIoT platform, open platforms and standards, and IoT Applications.
A comprehensive guide to Fog and Edge applications, architectures, and technologies Recent years have seen the explosive growth of the Internet of Things (IoT): the internet-connected network of devices that includes everything from personal electronics and home appliances to automobiles and industrial machinery. Responding to the ever-increasing bandwidth demands of the IoT, Fog and Edge computing concepts have developed to collect, analyze, and process data more efficiently than traditional cloud architecture. Fog and Edge Computing: Principles and Paradigms provides a comprehensive overview of the state-of-the-art applications and architectures driving this dynamic field of computing while highlighting potential research directions and emerging technologies. Exploring topics such as developing scalable architectures, moving from closed systems to open systems, and ethical issues rising from data sensing, this timely book addresses both the challenges and opportunities that Fog and Edge computing presents. Contributions from leading IoT experts discuss federating Edge resources, middleware design issues, data management and predictive analysis, smart transportation and surveillance applications, and more. A coordinated and integrated presentation of topics helps readers gain thorough knowledge of the foundations, applications, and issues that are central to Fog and Edge computing. This valuable resource: Provides insights on transitioning from current Cloud-centric and 4G/5G wireless environments to Fog Computing Examines methods to optimize virtualized, pooled, and shared resources Identifies potential technical challenges and offers suggestions for possible solutions Discusses major components of Fog and Edge computing architectures such as middleware, interaction protocols, and autonomic management Includes access to a website portal for advanced online resources Fog and Edge Computing: Principles and Paradigms is an essential source of up-to-date information for systems architects, developers, researchers, and advanced undergraduate and graduate students in fields of computer science and engineering.