Download Free Microwave Scattering And Emission Models For Users Book in PDF and EPUB Free Download. You can read online Microwave Scattering And Emission Models For Users and write the review.

Today, microwave remote sensing has evolved into a valuable and economical tool for a variety of applications. It is used in a wide range of areas, from geological sensing, geographical mapping, and weather monitoring, to GPS positioning, aircraft traffic, and mapping of oil pollution over the sea surface. This unique resource provides microwave remote sensing professionals with practical scattering and emission data models that represent the interaction between electromagnetic waves and a scene on the Earth surface in the microwave region. The book helps engineers understand and apply these models to their specific work in the field. CD-ROM Included! Contains Mathematica code for all the scattering and emission models presented the book, so practitioners can easily use the models for their own applications.
Radar scattering and imaging of rough surfaces is an active interdisciplinary area of research with many practical applications in fields such as mineral and resource exploration, ocean and physical oceanography, military and national defense, planetary exploration, city planning and land use, environmental science, and many more. By focusing on the most advanced analytical and numerical modeling and describing both forward and inverse modeling, Radar Scattering and Imaging of Rough Surfaces: Modeling and Applications with MATLAB® connects the scattering process to imaging techniques by vivid examples through numerical and experimental demonstrations and provides computer codes and practical uses. This book is unique in its simultaneous treatment of radar scattering and imaging. Key Features Bridges physical modeling with simulation for resolving radar imaging problems (the first comprehensive work to do so) Provides excellent basic and advanced information for microwave remote-sensing professionals in various fields of science and engineering Covers most advanced analytical and numerical modeling for both backscattering and bistatic scattering Includes MATLAB® codes useful not only for academics but also for radar engineers and scientists to develop tools applicable in different areas of earth studies Covering both the theoretical and the practical, Radar Scattering and Imaging of Rough Surfaces: Modeling and Applications with MATLAB® is an invaluable resource for professionals and students using remote sensing to study and explain the Earth and its processes. University and research institutes, electrical and radar engineers, remote-sensing image users, application software developers, students, and academics alike will benefit from this book. The author, Kun-Shan Chen, is an internationally known and respected engineer and scientist and an expert in the field of electromagnetic modeling.
The oceans cover approximately 71% of Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. Since the first launch of SEASAT satellite in 1978, an increasing number of SAR satellites have or will become available, such as the European Space Agency’s ERS-1/-2, ENVISAT, and Sentinel-1 series; the Canadian RADARSAT-1/-2 and the upcoming RADARSAT Constellation Mission series satellites; the Italian COSMO-SkyMed satellites, the German TERRASAR-X and TANDEM-X, and the Chinese GAOFEN-3 SAR, among others. Recently, European Space Agency has launched a new generation of SAR satellites, Sentinel-1A in 2014 and Sentinel-1B in 2016. These SAR satellites provide researchers with free and open SAR images necessary to carry out their research on the global oceans. The scope of Advances in SAR Remote Sensing of Oceans is to demonstrate the types of information that can be obtained from SAR images of the oceans, and the cutting-edge methods needed for analysing SAR images. Written by leading experts in the field, and divided into four sections, the book presents the basic principles of radar backscattering from the ocean surface; introduces the recent progresses in SAR remote sensing of dynamic coastal environment and management; discusses the state-of-the-art methods to monitor parameters or phenomena related to the dynamic ocean environment; and deals specifically with new techniques and findings of marine atmospheric boundary layer observations. Advances in SAR Remote Sensing of Oceans is a very comprehensive and up-to-date reference intended for use by graduate students, researchers, practitioners, and R&D engineers working in the vibrant field of oceans, interested to understand how SAR remote sensing can support oceanography research and applications.
This book demonstrates the capabilities of passive microwave technique for enhanced observations of ocean features, including the detection of (sub)surface events and/or disturbances while laying out the benefits and boundaries of these methods. It represents not only an introduction and complete description of the main principles of ocean microwave radiometry and imagery, but also provides guidance for further experimental studies. Furthermore, it expands the analysis of remote sensing methods, models, and techniques and focuses on a high-resolution multiband imaging observation concept. Such an advanced approach provides readers with a new level of geophysical information and data acquisition granting the opportunity to improve their expertise on advanced microwave technology, now an indispensable tool for diagnostics of ocean phenomena and disturbances.
Radar polarimetry has been highly sought after for its use in the precise monitoring of Earth's surface. Polarimetric SAR Imaging explains the basic concepts of polarimetry and its diverse applications including: deforestation, tree classification, landslide detection, tsunamis, volcano eruptions and ash distribution, snow accumulation, rice field monitoring, urban area exploration, ship detection, among other applications. The explanations use actual data sets taken by Advanced Land Observing Satellite (ALOS and ALOS2). With the increasing problems presented by climate change, there is a growing need for detailed earth observation using polarimetric data. As the treatment of vector nature of radar waves is complex, there is a gap between the theory and the application. Polarimetric SAR Imaging: Theory and Applications addresses and fills this gap. Features: Provides cutting-edge polarimetric applications for earth observation with full color images. Includes detailed descriptions of theory, equations, expansions, and flowcharts, and numerous real examples. Explains concepts, data analysis, and applications in simple and clear language aimed at an intuitive comprehension. Provides specific and unique examples of PolSAR images derived from actual space and airborne systems (ALOS/ALOS2, PiSAR-x/L) Covers the wide range of the radar polarimetry, especially the decomposition of the polarimetry data, an original method developed by the author using the Japanese polarimetric SAR data Illustrated in full color using images generated by polarimetric techniques, this book is easy to understand and use for both student and expert, and is an excellent resource both in the classroom and in the field.
Advanced Remote Sensing: Terrestrial Information Extraction and Applications, Second Edition, is a thoroughly updated application-based reference that provides a single source on the mathematical concepts necessary for remote sensing data gathering and assimilation. It presents state-of-the-art techniques for estimating land surface variables from a variety of data types, including optical sensors like RADAR and LIDAR. The book provides scientists in a number of different fields, including geography, geophysics, geology, atmospheric science, environmental science, planetary science and ecology with access to critically-important data extraction techniques and their virtually unlimited applications. While rigorous enough for the most experienced of scientists, the techniques presented are well designed and integrated, making the book's content intuitive and practical in its implementation. - Provides a comprehensive overview of many practical methods and algorithms - Offers descriptions of the principles and procedures of the state-of-the-art in remote sensing - Includes real-world case studies and end-of-chapter exercises - Contains thoroughly revised chapters, newly developed applications and updated examples
Lunar explorations have received increasing attention in recent years with tremendous application values, including using the Moon as a remote sensing platform for Earth observation. As an active sensor, the Synthetic Aperture Radar (SAR) can detect changes in the atmosphere, terrain, and ocean. Moon-based SAR, complementary to the spaceborne SAR systems, expands our capabilities of watching and understanding the Earth. This book explains the Moon-Earth observation geometry, generic parameters, image focusing, and outlook using the Moon-based SAR. Written as a SAR imaging of Earth on the lunar-based platform, it makes it an essential reference to those interested in planetary and Earth sciences. FEATURES Uses the Moon as a remote sensing platform for Earth observation Explains how to obtain a high spatial resolution with a short revisit time using the Moon-based SAR Covers the observation geometry, range and signal models, two-dimensional signal spectrum, and focusing algorithms for the Moon-based SAR Presents a detailed analysis of sources of phase errors in the Moon-based SAR signal Includes global case studies and introduces conceptual ideas for further research This book is intended for senior graduate students, professional researchers, and engineers studying and working in the fields of lunar exploration and remote sensing applications, especially when dealing with high-orbit SAR studies.
This book is a collection of selected peer-reviewed papers presented at the International Conference on Signal Processing and Communication (ICSC 2018). It covers current research and developments in the fields of communications, signal processing, VLSI circuits and systems, and embedded systems. The book offers in-depth discussions and analyses of latest problems across different sub-fields of signal processing and communications. The contents of this book will prove to be useful for students, researchers, and professionals working in electronics and electrical engineering, as well as other allied fields.
This unique resource presents the principles of meter wave ground imaging radar focusing on foliage penetration. Scattering of VHF/UHF radar signals are presented including the basic laws of electromagnetism, homogeneous media, media discontinuities/non-flat media discontinuities, and ground reflectivity. The book introduces meter wavelength synthetic aperture radar, bandwidth, and SAR imaging principles, including moving objects and also compares collected SAR data. Meter wavelength SAR system design and processing is explored, highlighting low frequency SAR design aspects, characterization of additive noise, antenna system basics, waveforms and emission adaptation which is critical material to the advancement in sensors and signal processing for below ground imaging by the energy industry and governments worldwide. The FFBP method of processing, explicit treatment of base 2 FFBP is explained along with motion errors sensitivity and motion estimation methods. The book also explains the Bayesian change detection, covariance moving target extraction and polarimetric subsurface imaging.
Uniquely focused on specific techniques that provide multi-resolution spatial and temporal analysis of forest structure characteristics and changes. Examines several large and important international remote sensing projects aimed at documenting entire tropical ecosystems. Provides novel wavelet methods for tropical forest structural measures. Includes Python code for a suite of wavelet based time-series and single set InSAR coherence and backscatter speckle filters, available to download.