Download Free Microlocal Analysis And Applications Book in PDF and EPUB Free Download. You can read online Microlocal Analysis And Applications and write the review.

This book corresponds to a graduate course given many times by the authors, and should prove to be useful to mathematicians and theoretical physicists.
CONTENTS: J.M. Bony: Analyse microlocale des equations aux derivees partielles non lineaires.- G.G. Grubb: Parabolic pseudo-differential boundary problems and applications.- L. H|rmander: Quadratic hyperbolic operators.- H. Komatsu: Microlocal analysis in Gevrey classes and in complex domains.- J. Sj|strand: Microlocal analysis for the periodic magnetic Schr|dinger equation and related questions.
This book presents the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics in a pedagogical, way and is mainly addressed to non-specialists in the subject. It is based on lectures taught by the author over several years, and includes many exercises providing outlines of useful applications of the semi-classical theory.
"...A graduate level text introducing readers to semiclassical and microlocal methods in PDE." -- from xi.
"Provides a thorough introduction to the algebraic theory of systems of differential equations, as developed by the Japanese school of M. Sato and his colleagues. Features a complete review of hyperfunction-microfunction theory and the theory of D-modules. Strikes the perfect balance between analytic and algebraic aspects."
The Radon transform is an important topic in integral geometry which deals with the problem of expressing a function on a manifold in terms of its integrals over certain submanifolds. Solutions to such problems have a wide range of applications, namely to partial differential equations, group representations, X-ray technology, nuclear magnetic resonance scanning, and tomography. This second edition, significantly expanded and updated, presents new material taking into account some of the progress made in the field since 1980. Aimed at beginning graduate students, this monograph will be useful in the classroom or as a resource for self-study. Readers will find here an accessible introduction to Radon transform theory, an elegant topic in integral geometry.
Masaki Kashiwara is undoubtedly one of the masters of the theory of $D$-modules, and he has created a good, accessible entry point to the subject. The theory of $D$-modules is a very powerful point of view, bringing ideas from algebra and algebraic geometry to the analysis of systems of differential equations. It is often used in conjunction with microlocal analysis, as some of the important theorems are best stated or proved using these techniques. The theory has been used very successfully in applications to representation theory. Here, there is an emphasis on $b$-functions. These show up in various contexts: number theory, analysis, representation theory, and the geometry and invariants of prehomogeneous vector spaces. Some of the most important results on $b$-functions were obtained by Kashiwara. A hot topic from the mid '70s to mid '80s, it has now moved a bit more into the mainstream. Graduate students and research mathematicians will find that working on the subject in the two-decade interval has given Kashiwara a very good perspective for presenting the topic to the general mathematical public.
Bringing together two fundamental texts from Frédéric Pham’s research on singular integrals, the first part of this book focuses on topological and geometrical aspects while the second explains the analytic approach. Using notions developed by J. Leray in the calculus of residues in several variables and R. Thom’s isotopy theorems, Frédéric Pham’s foundational study of the singularities of integrals lies at the interface between analysis and algebraic geometry, culminating in the Picard-Lefschetz formulae. These mathematical structures, enriched by the work of Nilsson, are then approached using methods from the theory of differential equations and generalized from the point of view of hyperfunction theory and microlocal analysis. Providing a ‘must-have’ introduction to the singularities of integrals, a number of supplementary references also offer a convenient guide to the subjects covered. This book will appeal to both mathematicians and physicists with an interest in the area of singularities of integrals. Frédéric Pham, now retired, was Professor at the University of Nice. He has published several educational and research texts. His recent work concerns semi-classical analysis and resurgent functions.
This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*- algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.