Download Free Microdosimetry And Its Applications Book in PDF and EPUB Free Download. You can read online Microdosimetry And Its Applications and write the review.

Microdosimetry and Its Applications is an advanced textbook presenting the fundamental concepts and numerical aspects of the absorption of energy by matter exposed to ionizing radiation. It is the only comprehensive work on the subject that can be considered definitive. It provides a deeper understanding of the initial phase of the interaction of ionizing radiation with matter, especially biological matter, and its consequences.
Experimental microdosimetry deals with the measurement of charged particle energy deposition in tissue equivalent volumes, ranging in size from nanometres to micrometres. Microdosimetry is employed to improve our understanding of the relationship between radiation energy deposition, the resulting biological effects, and the appropriate quantities to be used in characterizing and quantifying radiation quality. Although many reviews and contributions to the field have been published over the past fifty years, this new book is the first to provide a single, up to date, and easily accessible account of experimental microdosimetry. This book is designed to be used in medical, radiation, and health physics courses and by Master’s and PhD students. In addition to serving as an introductory text to the field for graduate students, this book will also be of interest as a teaching and reference resource for graduate supervisors and established researchers. Drs. Lennart Lindborg and Anthony Waker have spent a life-time career in experimental microdosimetry research in academic, industrial and regulatory environments and have observed the development of the field from its early days as a recognized discipline; they bring to this book particular knowledge and experience in the design, construction, operation and use of tissue equivalent gas ionization counters and chambers.
The topic of this book is the use of scintillating materials in the detection of ionising radiation for medical imaging. The text surveys the state of the art in radiation detectors for medical imaging, followed by an in-depth review of all aspects of the use of scintillating materials. Also included are detailed discussion of ways to improve the performance of existing scintillating materials and completely novel uses of scintillating materials.
One of the aims of this book was to focus the attention of specialists to the diversity of the effects of the ionising radiation on biological and physical systems. Special emphasis has been placed on the exquisite complexities/differences introduced by high ionisation density versus low ionisation density irradiation in both biological and physical systems (Scholz – Chapter 1, Horowitz – Chapter 2, Olko – Chapter 3). As well we wanted to point out the need for novel experimental and theoretical approaches required to advance the important fields of micro and nanodosimetry. Important first steps have already been taken, for example, the accelerated application of semiconductor detectors in their various forms to microdosimetry and as well to practical, important applications in the radiation dosimetry of oncological procedures (Rosenfeld – Chapter 6). The vast number of applications of TLD to radiation dosimetry are not neglected; a special chapter is devoted to the application of TLDs to medical dosimetry applications (Mobit and Kron – Chapter 7) as well as a tutorial approach in an additional chapter to the cavity theories required to extrapolate dose from the detector medium to the tissue medium (Mobit and Sandison - Chapter 5). One of the major features of this book is the intensive, in depth, coverage of the theory and modelling of TL both from the solid state physics point of view (Chen – Chapter 4) and the microdosimetic point of view (Horowitz – Chapter 2 and Olko – Chapter 3). The many puzzling, quaint, quizzical features of TL science can now be understood in the framework of these advanced theoretical models, explained in straightforward, understandable terms.· Quantifies/unifies the effects of ionising radiation in both the biological and physical systems· Authoritative treatment of applications of semiconductor detectors and thermoluminescence dosemeters in medica l radiation dosimetry· Basic and advanced aspects of microdosimetry applied to both biological and physical systems· In-depth review of the effects of the density of ionising radiation in tsl and osl · Concise and elegant treatment of cavity theory in medical oncological dosimetry· Comprehensive review of this important interdisciplinary field including hundreds of ilustrations and references
Frontiers in Neutron Capture Therapy contains current research results originally presented at the Eighth International Symposium on Neutron Capture Therapy for Cancer in La Jolla, CA. This comprehensive collection of peer-reviewed manuscripts is showcased in two volumes covering all aspects of the development of this multidisciplinary approach to cancer therapy. Volume I of this work includes clinical results and current progress in treatment planning, neutron sources and dosimetry, while Volume II presents the synthesis, pharmacology and tissue-targeting design of boron compounds, including work on preclinical dosimetry and radiobiology. Intended for researchers and clinicians involved with or interested in new modes of cancer therapy, this volume will also serve as a useful guideline for scientists, students, and practitioners in the field.
This book is intended as a textbook that presents a modern approach to radiation dosimetry, covering the principles and applications of microdosimetry in radiation dosimetry, radiation protection, radiation biophysics and radiotherapy. It is designed to be used in medical and radiation physics courses and by Master and PhD students in medical radiation physics. Designed to be academic as well as practical, it is the first book of its kind suitable for both teaching and researching various radiation dosimetry topics.
The Dosimetry of Ionizing Radiation, Volume II, attempts to fill the need for updated reference material on the field of radiation dosimetry. This book presents some broad topics in dosimetry and a variety of radiation dosimetry instrumentation and its application. The book opens with a chapter that extends and applies the concepts of microdosimetry to biological systems. This is followed by separate chapters on the state-of-the-art equipment and techniques used to determine neutron spectra; studies to determine recombination effects in ionization chambers exposed to high-intensity pulsed radiation; advances in water and polystyrene calorimetry; and beta-photon dosimetry for radiation protection. This book is clearly a valuable collection of work by outstanding authorities in their individual fields. It has an international flavor, with authors from England, Canada, and the United States. The quality of the work is equal to the best of what has been published in the past.
Mankind has evolved in a sea of radiation. We have been bombarded constantly by X rays, y rays, UV rays, and particulate radiations from outer space, and by terrestrial radiations from the ground we walk on, from our building materials, and from our own bodies. Recently, we have become increasingly subjected to man-made radiations, especially from the medical and defense industries. All of these radiations are capable of affecting us biologically, both to our benefit and to our detriment. This book provides a thorough review of the physical and biological dosimetry of these radiations. It is targeted to those health professionals who are concerned with understanding the mechanisms fundamental to the biological action of ionizing radiation or who are involved in the application, measurement, or treatment of the effects of such radiations. The first chapter, on "Bioeffect Dosimetry in Radiation Therapy," should be of special interest to anyone involved in the treatment of cancer by radiation. It includes a brief review of the history of the manipulation of time-dose parameters in order to improve therapeutic benefit, and an up-to-date analysis of time-dose relationships designed for use in fractionated radiotherapy and brachytherapy. This is followed by two chapters reviewing and comparing national and international protocols for the precise measurement of photon and electron radiations in therapy. These chapters should be invaluable to radiation physicists responsible for treatment machine calibrations.