Download Free Microbial Styrene Degradation Book in PDF and EPUB Free Download. You can read online Microbial Styrene Degradation and write the review.

This book describes the complex processes involved in styrene degradation by microbes, including highly adaptive microorganisms, the various enzymes involved in styrene biodegradation, new styrene-catabolic routes, novel regulatory mechanisms, and the genes coding for styrene metabolizing enzymes. Numerous biotechnological applications are discussed, such as the development of sustainable eco-friendly technologies as well as the use of styrene degrading microorganisms and their enzymes as a rich resource for biotechnology.
Our interest in the microbial biodegradation of xenobiotics has increased many folds in recent years to find out sustainable ways for environmental cleanup. Bioremediation and biotransformation processes harness the naturally occurring ability of microbes to degrade, transform or accumulate a wide range of organic pollutants. Major methodological breakthroughs in recent years through detailed genomic, metagenomic, proteomic, bioinformatic and other high-throughput analyses of environmentally relevant microorganisms have provided us unprecedented insights into key biodegradative pathways and the ability of organisms to adapt to changing environmental conditions. The degradation of a wide spectrum of organic pollutants and wastes discharged into the environment by anthropogenic activities is an emerging need today to promote sustainable development of our society with low environmental impact. Microbial processes play a major role in the removal of recalcitrant compounds taking advantage of the astonishing catabolic versatility of microorganisms to degrade or transform such compounds. New breakthroughs in sequencing, genomics, proteomics, bioinformatics and imaging are generating vital information which opens a new era providing new insights of metabolic and regulatory networks, as well as clues to the evolution of degradation pathways and to the molecular adaptation strategies to changing environmental conditions. Functional genomic and metagenomic approaches are increasing our understanding of the relative importance of different pathways and regulatory networks to carbon flux in particular environments and for particular compounds. New approaches will certainly accelerate the development of bioremediation technologies and biotransformation processes in coming years for natural attenuation of contaminated environments
A comprehensive and consolidated account of how microorganisms can play a significant role in degrading and detoxifying toxic, carcinogenic, mutagenic, and teratogenic compounds is detailed in this book. Moreover, the volume deals with all aspects of microbial degradation, ranging from screening methods for the degradative microorganisms, processes of degradation, strain improvement for enhanced biodegradation, and elimination of undesirable compounds to improving health and environmental protection strategies.The book will provide an opportunity for scientists in the areas of microbiology, biochemistry, engineering, food science, biotechnology, and environmental science to obtain a clear understanding of microbial biotransformations of xenobiotics, as well as an interface between industry and the academic world. The first book of its kind, it will open new vistas of research in the field of Applied Microbiology and Biotechnology in general, and Biotransformations in particular.
This book describes the complex processes involved in styrene degradation by microbes, including highly adaptive microorganisms, the various enzymes involved in styrene biodegradation, new styrene-catabolic routes, novel regulatory mechanisms, and the genes coding for styrene metabolizing enzymes. Numerous biotechnological applications are discussed, such as the development of sustainable eco-friendly technologies as well as the use of styrene degrading microorganisms and their enzymes as a rich resource for biotechnology.
Microbes play a major role in the degradation of various pollutants. Therefore, microbes find potential application in the area of energy and environmental technology. The book provides in-depth literature on the topics of environmental and industrial importance. It is compiled to explore the application of microbe used in the degradation of aflatoxin, polymers, biomass into fuel, disinfectants, food products, xenobiotic compounds, lipids, steroids, organic pollutants, proteins, oil waste, and wastewater pollutants. This book will be of interest to teachers, researchers, scientists, and capacity builders. Also, the book serves as additional reading material for undergraduate and graduate students of microbiology and environmental sciences. National and international remediation and restoration scientists, policymakers will also find this to be a useful read.
Biotechnology for Zero Waste The use of biotechnology to minimize waste and maximize resource valorization In Biotechnology for Zero Waste: Emerging Waste Management Techniques, accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more. Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. Biotechnology for Zero Waste effectively guides readers on the path to creating sustainable products from waste. The book also includes: A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhancing biogas production Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste Practical discussions of bioreactors for zero waste and waste2energy with biotechnology An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, Biotechnology for Zero Waste: Emerging Waste Management Techniques will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists.
Bioremediation and Sustainability is an up-to-date and comprehensive treatment of research and applications for some of the most important low-cost, "green," emerging technologies in chemical and environmental engineering Sustainable development requires the development and promotion of environmental management and a constant search for green technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities with the main sources of contaminants being the chemical industries. Bioremediation is a technique that uses living organisms in order to degrade or transform contaminants into their less toxic forms. It is based on the existence of microorganisms with the capacity to attack the compounds on the enzymatic level. Bioremediation is an increasingly popular low-cost alternative to conventional methods for treating wastes and contaminated media with the possibility to degrade these contaminants using natural microbial activity mediated by different consortia of microbes. Over the last few years, the scientific literature has revealed the progressive emergence of various bioremediation techniques. Bioremediation and Sustainability presents an up-to-date and comprehensive collection of chapters prepared in bioremediation technology research and applications. The strategies covered in this volume can be applied in situ or ex situ, depending on the site in which they will be applied. In situ is the treatment done in the site of the contamination, and ex situ involves the removal of soil or water to subsequent treatment. There is a wide variety of techniques that have been developed in the past and are covered in this volume, such as natural attenuation, bioaugmentation, biostimulation, biosorption, composting, phytoremediation, rhizoremediation, and bioleaching.
Enzymatic Plastic Degradation, Volume 648 in the Methods in Enzymology series, continues the legacy of this premier serial with chapters authored by leaders in the field. Chapters in this latest release include Evaluating plastic pollution and environmental degradation, Assessment methods for microplastic pollution in the oceans and fresh water, Exploring microbial consortia from various environments for plastic degradation, Characterization of filamentous fungi for attack on synthetic polymers via biological Fenton chemistry, Synthesis of radioactive-labeled nanoplastics for assaying the environmental (microbial) PS degradation, Exploring metagenome for plastic degrading enzymes, Cutinases from thermophilic bacteria (actinomycetes): from identification to functional and structural characterization, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Enzymology series - Covers the latest research and technologies in enzymatic plastic degradation
“Microbial Enzymes: Roles and applications in industry” offers an essential update on the field of microbial biotechnology, and presents the latest information on a range of microbial enzymes such as fructosyltransferase, laccases, amylases, lipase, and cholesterol oxidase, as well as their potential applications in various industries. Production and optimisation technologies for several industrially relevant microbial enzymes are also addressed. In recent years, genetic engineering has opened up new possibilities for redesigning microbial enzymes that are useful in multiple industries, an aspect that the book explores. In addition, it demonstrates how some of the emerging issues in the fields of agriculture, environment and human health can be resolved with the aid of green technologies based on microbial enzymes. The topics covered here will not only provide a better understanding of the commercial applications of microbial enzymes, but also outline futuristic approaches to use microbial enzymes as driver of industrial sustainability. Lastly, the book is intended to provide readers with an overview of recent applications of microbial enzymes in various industrial sectors, and to pique researchers’ interest in the development of novel microbial enzyme technologies to meet the changing needs of industry.