Download Free Methods Of Wave Theory In Dispersive Media Book in PDF and EPUB Free Download. You can read online Methods Of Wave Theory In Dispersive Media and write the review.

This book presents the main mathematical methods of description and general problems in the theory of linear waves in dispersive systems and media, including equilibrium and nonequilibrium waves. To show how the general theory can be applied in practice, the authors give a unified description of the waves in all important physical systems which are traditionally studied in the mechanics of continuous media, electrodynamics, plasma physics, electronics and physical kinetics. Consideration is also given to the interaction of waves in coupled systems, the propagation and evolution of localized wave perturbations, and the emission of waves from dispersive media under the action of external sources moving in a prescribed manner. A general theory of instabilities of linear systems is given, in which the criteria for absolute and convective instabilities are formulated and compared, and Green's functions for some nonequilibrium media are calculated. Special attention is paid to problems in the theory of linear electromagnetic waves in plasmas and plasma-like media. The book also contains a number of original results of the present-day wave theory that have thus far been published in scientific journals only.
This book presents the classical theorems about simply connected smooth 4-manifolds: intersection forms and homotopy type, oriented and spin bordism, the index theorem, Wall's diffeomorphisms and h-cobordism, and Rohlin's theorem. Most of the proofs are new or are returbishings of post proofs; all are geometric and make us of handlebody theory. There is a new proof of Rohlin's theorem using spin structures. There is an introduction to Casson handles and Freedman's work including a chapter of unpublished proofs on exotic R4's. The reader needs an understanding of smooth manifolds and characteristic classes in low dimensions. The book should be useful to beginning researchers in 4-manifolds.
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil
In this book, a wide range of different topics related to analytical as well as numerical solutions of problems related to scattering, propagation, radiation, and emission in different medium are discussed. Design of several devices and their measurements aspects are introduced. Topics related to microwave region as well as Terahertz and quasi-optical region are considered. Bi-isotropic metamaterial in optical region is investigated. Interesting numerical methods in frequency domain and time domain for scattering, radiation, forward as well as reverse problems and microwave imaging are summarized. Therefore, the book will satisfy different tastes for engineers interested for example in microwave engineering, antennas, and numerical methods.
This book explores recent developments in QIA and describes the application of the theory to different branches of wave physics, from plasma physics, quantum physics, and ionospheric radio wave propagation to acoustics, optics, and astrophysics. This is an up-to-the-minute exposition of the latest developments in an important new area, written by authors of outstanding reputation. A rich source of both theoretical methods and practical applications, it covers a wide range of problems of general physical significance. Until recently, there was no effective method for describing waves in weakly anisotropic inhomogeneous media. The method of quasi-isotropic approximation (QIA) of geometrical optics was developed to overcome this problem. The QIA approach bridges the gap between geometrical optics of isotropic media (Rytov method) and that of anisotropic media (Courant-Lax approach), thus providing a complete picture of the geometrical optics of inhomogeneous media.
This book begins by introducing magnetism and discusses magnetic properties of materials, magnetic moments of atoms and ions, and the elements important to magnetism. It covers magnetic susceptibilities and electromagnetic waves in anisotropic dispersive media among other topics. There are problems at the end of each chapter, many of which serve to expand or explain the material in the text. The bibliographies for each chapter give an entry to the research literature.
New applications for composite materials are being developed at a rapid pace. However, their complex microstructures present considerable challenges for nondestructive testing and characterization. Ultrasonic waves provide quantitative means of nondestructive evaluation of these materials and structures. For this purpose, it is necessary to obtain
Electromagnetic Wave Theory, Part 2 contains the proceedings of a Symposium on Electromagnetic Wave Theory held at Delft, The Netherlands in September 1965. The symposium provided a forum for discussing electromagnetic wave theory and tackled a wide range of topics, from propagation in nonlinear media to electromagnetic wave propagation and amplification in solid-state plasmas. Electromagnetic waves in nonlinear transmission lines with active parameters are also considered, along with the phase dependence of maser active material Q-factor on pump intensity and frequency. Comprised of four sections, this volume begins with an analysis of two modes of propagation that are coupled through parametric modulation in nonlinear media. The discussion then turns to symmetry restrictions in nonlinear, non-absorbing, non-dispersive media; nonlinear interaction between two beams of plane electromagnetic waves in an anisotropic medium; radiation in periodically non-stationary media; and electromagnetic wave propagation in time-varying media. Subsequent chapters explore the diffraction of electromagnetic waves by plasma structures; resonant electromagnetic scattering from gyrotropic plasmas; scattering and transmission of electromagnetic waves at a statistically rough boundary between two dielectric media; and developments in wavefront reconstruction. This book will be useful for students, practitioners, and researchers in physics.
The book will cover the past, present and future developments of field theory and computational electromagnetics. The first two chapters will give an overview of the historical developments and the present the state-of-the-art in computational electromagnetics. These two chapters will set the stage for discussing recent progress, new developments, challenges, trends and major directions in computational electromagnetics with three main emphases: a. Modeling of ever larger structures with multi-scale dimensions and multi-level descriptions (behavioral, circuit, network and field levels) and transient behaviours b. Inclusions of physical effects other than electromagnetic: quantum effects, thermal effects, mechanical effects and nano scale features c. New developments in available computer hardware, programming paradigms (MPI, Open MP, CUDA and Open CL) and the associated new modeling approaches These are the current emerging topics in the area of computational electromagnetics and may provide readers a comprehensive overview of future trends and directions in the area. The book is written for students, research scientists, professors, design engineers and consultants who engaged in the fields of design, analysis and research of the emerging technologies related to computational electromagnetics, RF/microwave, optimization, new numerical methods, as well as accelerator simulator, dispersive materials, nano-antennas, nano-waveguide, nano-electronics, terahertz applications, bio-medical and material sciences. The book may also be used for those involved in commercializing electromagnetic and related emerging technologies, sensors and the semiconductor industry. The book can be used as a reference book for graduates and post graduates. It can also be used as a text book for workshops and continuing education for researchers and design engineers.