Download Free Methods For Mining And Summarizing Text Conversations Book in PDF and EPUB Free Download. You can read online Methods For Mining And Summarizing Text Conversations and write the review.

Due to the Internet Revolution, human conversational data -- in written forms -- are accumulating at a phenomenal rate. At the same time, improvements in speech technology enable many spoken conversations to be transcribed. Individuals and organizations engage in email exchanges, face-to-face meetings, blogging, texting and other social media activities. The advances in natural language processing provide ample opportunities for these "informal documents" to be analyzed and mined, thus creating numerous new and valuable applications. This book presents a set of computational methods to extract information from conversational data, and to provide natural language summaries of the data. The book begins with an overview of basic concepts, such as the differences between extractive and abstractive summaries, and metrics for evaluating the effectiveness of summarization and various extraction tasks. It also describes some of the benchmark corpora used in the literature. The book introduces extraction and mining methods for performing subjectivity and sentiment detection, topic segmentation and modeling, and the extraction of conversational structure. It also describes frameworks for conducting dialogue act recognition, decision and action item detection, and extraction of thread structure. There is a specific focus on performing all these tasks on conversational data, such as meeting transcripts (which exemplify synchronous conversations) and emails (which exemplify asynchronous conversations). Very recent approaches to deal with blogs, discussion forums and microblogs (e.g., Twitter) are also discussed. The second half of this book focuses on natural language summarization of conversational data. It gives an overview of several extractive and abstractive summarizers developed for emails, meetings, blogs and forums. It also describes attempts for building multi-modal summarizers. Last but not least, the book concludes with thoughts on topics for further development. Table of Contents: Introduction / Background: Corpora and Evaluation Methods / Mining Text Conversations / Summarizing Text Conversations / Conclusions / Final Thoughts
Due to the Internet Revolution, human conversational data -- in written forms -- are accumulating at a phenomenal rate. At the same time, improvements in speech technology enable many spoken conversations to be transcribed. Individuals and organizations engage in email exchanges, face-to-face meetings, blogging, texting and other social media activities. The advances in natural language processing provide ample opportunities for these "informal documents" to be analyzed and mined, thus creating numerous new and valuable applications. This book presents a set of computational methods to extract information from conversational data, and to provide natural language summaries of the data. The book begins with an overview of basic concepts, such as the differences between extractive and abstractive summaries, and metrics for evaluating the effectiveness of summarization and various extraction tasks. It also describes some of the benchmark corpora used in the literature. The book introduces extraction and mining methods for performing subjectivity and sentiment detection, topic segmentation and modeling, and the extraction of conversational structure. It also describes frameworks for conducting dialogue act recognition, decision and action item detection, and extraction of thread structure. There is a specific focus on performing all these tasks on conversational data, such as meeting transcripts (which exemplify synchronous conversations) and emails (which exemplify asynchronous conversations). Very recent approaches to deal with blogs, discussion forums and microblogs (e.g., Twitter) are also discussed. The second half of this book focuses on natural language summarization of conversational data. It gives an overview of several extractive and abstractive summarizers developed for emails, meetings, blogs and forums. It also describes attempts for building multi-modal summarizers. Last but not least, the book concludes with thoughts on topics for further development. Table of Contents: Introduction / Background: Corpora and Evaluation Methods / Mining Text Conversations / Summarizing Text Conversations / Conclusions / Final Thoughts
This book constitutes the thoroughly refereed post-conference proceedings of the First International Workshop on Future and Emergent Trends in Language Technology, FETLT 2015, held in Seville, Spain, in November 2015. The 10 full papers presented together with 3 position papers and 7 invited keynote abstracts were selected from numerous submissions. The structure of the Workshop will feature a significant number of experts in language technologies and convergent areas. One objective will be the organization of forum sessions in order to review some of the current-trend research projects that are already addressing new methodological approaches and proposing solutions and innovative applications. A second major objective will be brainstorming sessions where representatives of the most innovative industrial sector in this area can present and describe the challenges and socio-economic needs of the present and immediate future. All researchers are invited to submit proposals that incorporate solid research and innovation ideas in the field of language technology and in connection with other convergent areas.
This book includes selected papers from the International Conference on Data Science and Intelligent Applications (ICDSIA 2020), hosted by Gandhinagar Institute of Technology (GIT), Gujarat, India, on January 24–25, 2020. The proceedings present original and high-quality contributions on theory and practice concerning emerging technologies in the areas of data science and intelligent applications. The conference provides a forum for researchers from academia and industry to present and share their ideas, views and results, while also helping them approach the challenges of technological advancements from different viewpoints. The contributions cover a broad range of topics, including: collective intelligence, intelligent systems, IoT, fuzzy systems, Bayesian networks, ant colony optimization, data privacy and security, data mining, data warehousing, big data analytics, cloud computing, natural language processing, swarm intelligence, speech processing, machine learning and deep learning, and intelligent applications and systems. Helping strengthen the links between academia and industry, the book offers a valuable resource for instructors, students, industry practitioners, engineers, managers, researchers, and scientists alike.
Data usually comes in a plethora of formats and dimensions, rendering the exploration and information extraction processes challenging. Thus, being able to perform exploratory analyses in the data with the intent of having an immediate glimpse on some of the data properties is becoming crucial. Exploratory analyses should be simple enough to avoid complicate declarative languages (such as SQL) and mechanisms, and at the same time retain the flexibility and expressiveness of such languages. Recently, we have witnessed a rediscovery of the so-called example-based methods, in which the user, or the analyst, circumvents query languages by using examples as input. An example is a representative of the intended results, or in other words, an item from the result set. Example-based methods exploit inherent characteristics of the data to infer the results that the user has in mind, but may not able to (easily) express. They can be useful in cases where a user is looking for information in an unfamiliar dataset, when the task is particularly challenging like finding duplicate items, or simply when they are exploring the data. In this book, we present an excursus over the main methods for exploratory analysis, with a particular focus on example-based methods. We show how that different data types require different techniques, and present algorithms that are specifically designed for relational, textual, and graph data. The book presents also the challenges and the new frontiers of machine learning in online settings which recently attracted the attention of the database community. The lecture concludes with a vision for further research and applications in this area.
This book constitutes the refereed proceedings of the 28th Canadian Conference on Artificial Intelligence, Canadian AI 2015, held in Halifax, Nova Scotia, Canada, in June 2015.The 15 regular papers and 12 short papers presented together with 8 papers from the Graduate Student Symposium were carefully reviewed and selected from 81 submissions. The papers are organized in topical sections such as agents, uncertainty and games; AI applications; NLP, text and social media mining; data mining and machine learning.
Safety and Reliability of Complex Engineered Systems contains the Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015, held 7-10 September 2015 in Zurich, Switzerland. Including 570 papers on theories and methods in the area of risk, safety and reliability, and their applications to a wide range of industrial, civil and social sectors, this book will be of interest to academics and professionals involved or interested in aspect of risk, safety and reliability in various engineering areas.
As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major advantages in terms of scalability, autonomy and dynamic behavior of peers, and decentralization of control. Thus, they are well suited for large-scale data sharing in distributed environments. Most of the existing P2P approaches for data sharing rely on either structured networks (e.g., DHTs) for efficient indexing, or unstructured networks for ease of deployment, or some combination. However, these approaches have some limitations, such as lack of freedom for data placement in DHTs, and high latency and high network traffic in unstructured networks. To address these limitations, gossip protocols which are easy to deploy and scale well, can be exploited. In this book, we will give an overview of these different P2P techniques and architectures, discuss their trade-offs, and illustrate their use for decentralizing several large-scale data sharing applications. Table of Contents: P2P Overlays, Query Routing, and Gossiping / Content Distribution in P2P Systems / Recommendation Systems / Top-k Query Processing in P2P Systems
In the 1980s, traditional Business Intelligence (BI) systems focused on the delivery of reports that describe the state of business activities in the past, such as for questions like "How did our sales perform during the last quarter?" A decade later, there was a shift to more interactive content that presented how the business was performing at the present time, answering questions like "How are we doing right now?" Today the focus of BI users are looking into the future. "Given what I did before and how I am currently doing this quarter, how will I do next quarter?" Furthermore, fuelled by the demands of Big Data, BI systems are going through a time of incredible change. Predictive analytics, high volume data, unstructured data, social data, mobile, consumable analytics, and data visualization are all examples of demands and capabilities that have become critical within just the past few years, and are growing at an unprecedented pace. This book introduces research problems and solutions on various aspects central to next-generation BI systems. It begins with a chapter on an industry perspective on how BI has evolved, and discusses how game-changing trends have drastically reshaped the landscape of BI. One of the game changers is the shift toward the consumerization of BI tools. As a result, for BI tools to be successfully used by business users (rather than IT departments), the tools need a business model, rather than a data model. One chapter of the book surveys four different types of business modeling. However, even with the existence of a business model for users to express queries, the data that can meet the needs are still captured within a data model. The next chapter on vivification addresses the problem of closing the gap, which is often significant, between the business and the data models. Moreover, Big Data forces BI systems to integrate and consolidate multiple, and often wildly different, data sources. One chapter gives an overview of several integration architectures for dealing with the challenges that need to be overcome. While the book so far focuses on the usual structured relational data, the remaining chapters turn to unstructured data, an ever-increasing and important component of Big Data. One chapter on information extraction describes methods for dealing with the extraction of relations from free text and the web. Finally, BI users need tools to visualize and interpret new and complex types of information in a way that is compelling, intuitive, but accurate. The last chapter gives an overview of information visualization for decision support and text.
The topic of using views to answer queries has been popular for a few decades now, as it cuts across domains such as query optimization, information integration, data warehousing, website design and, recently, database-as-a-service and data placement in cloud systems. This book assembles foundational work on answering queries using views in a self-contained manner, with an effort to choose material that constitutes the backbone of the research. It presents efficient algorithms and covers the following problems: query containment; rewriting queries using views in various logical languages; equivalent rewritings and maximally contained rewritings; and computing certain answers in the data-integration and data-exchange settings. Query languages that are considered are fragments of SQL, in particular select-project-join queries, also called conjunctive queries (with or without arithmetic comparisons or negation), and aggregate SQL queries. This second edition includes two new chapters that refer to tree-like data and respective query languages. Chapter 8 presents the data model for XML documents and the XPath query language, and Chapter 9 provides a theoretical presentation of tree-like data model and query language where the tuples of a relation share a tree-structured schema for that relation and the query language is a dialect of SQL with evaluation techniques appropriately modified to fit the richer schema.